# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # adapted from https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/fuyu/modeling_fuyu.py # Copyright 2023 The vLLM team. # Copyright 2023 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Fuyu model.""" import math from collections.abc import Iterable, Mapping, Sequence from typing import Annotated, Literal import torch import torch.nn as nn from transformers import BatchFeature, FuyuConfig, FuyuImageProcessor, FuyuProcessor from vllm.config import VllmConfig from vllm.config.multimodal import BaseDummyOptions from vllm.model_executor.layers.linear import ColumnParallelLinear from vllm.model_executor.models.persimmon import PersimmonForCausalLM from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import ( MultiModalDataDict, MultiModalFieldConfig, MultiModalKwargsItems, ) from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems from vllm.multimodal.processing import ( BaseMultiModalProcessor, BaseProcessingInfo, PromptReplacement, PromptUpdate, PromptUpdateDetails, ) from vllm.multimodal.profiling import BaseDummyInputsBuilder from vllm.sequence import IntermediateTensors from vllm.utils.tensor_schema import TensorSchema, TensorShape from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP from .utils import AutoWeightsLoader, WeightsMapper, flatten_bn, maybe_prefix # Cannot find the following 2 numbers from hf config. _IMAGE_TOKEN_ID = 71011 _NEWLINE_TOKEN_ID = 71019 class FuyuImagePatchInputs(TensorSchema): """ Dimensions: - bn: Batch size * number of images - bnp: Batch size * number of images * number of patches - fn: patch_size_x * patch_size_y * num_channels """ type: Literal["image_patches"] = "image_patches" image_patches_flat: Annotated[torch.Tensor, TensorShape("bnp", "fn")] patches_per_image: Annotated[list[int], TensorShape("bn")] """ The number of total patches for each image in the batch. This is used to split the embeddings which has the first two dimensions flattened just like `image_patches_flat`. """ class FuyuProcessingInfo(BaseProcessingInfo): def get_hf_config(self): return self.ctx.get_hf_config(FuyuConfig) def get_hf_processor(self, **kwargs: object): return self.ctx.get_hf_processor(FuyuProcessor, **kwargs) def get_image_processor(self, **kwargs: object) -> FuyuImageProcessor: return self.get_hf_processor(**kwargs).image_processor def get_supported_mm_limits(self) -> Mapping[str, int | None]: return {"image": 1} def get_image_feature_grid_size( self, *, image_width: int, image_height: int, ) -> tuple[int, int]: image_processor = self.get_image_processor() target_width = image_processor.size["width"] target_height = image_processor.size["height"] patch_width = image_processor.patch_size["width"] patch_height = image_processor.patch_size["height"] if not (image_width <= target_width and image_height <= target_height): height_scale_factor = target_height / image_height width_scale_factor = target_width / image_width optimal_scale_factor = min(height_scale_factor, width_scale_factor) image_height = int(image_height * optimal_scale_factor) image_width = int(image_width * optimal_scale_factor) ncols = math.ceil(image_width / patch_width) nrows = math.ceil(image_height / patch_height) return ncols, nrows def get_num_image_tokens( self, *, image_width: int, image_height: int, ) -> int: ncols, nrows = self.get_image_feature_grid_size( image_width=image_width, image_height=image_height, ) return ncols * nrows def get_image_size_with_most_features(self) -> ImageSize: image_processor = self.get_image_processor() return ImageSize( width=image_processor.size["width"], height=image_processor.size["height"] ) class FuyuDummyInputsBuilder(BaseDummyInputsBuilder[FuyuProcessingInfo]): def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str: return "" def get_dummy_mm_data( self, seq_len: int, mm_counts: Mapping[str, int], mm_options: Mapping[str, BaseDummyOptions] | None = None, ) -> MultiModalDataDict: target_width, target_height = self.info.get_image_size_with_most_features() num_images = mm_counts.get("image", 0) image_overrides = mm_options.get("image") if mm_options else None return { "image": self._get_dummy_images( width=target_width, height=target_height, num_images=num_images, overrides=image_overrides, ) } class FuyuMultiModalProcessor(BaseMultiModalProcessor[FuyuProcessingInfo]): def _call_hf_processor( self, prompt: str, mm_data: Mapping[str, object], mm_kwargs: Mapping[str, object], tok_kwargs: Mapping[str, object], ) -> BatchFeature: if not mm_data: # Avoid warning from HF logger for text-only input prompt_ids = self.info.get_tokenizer().encode(prompt) prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids) return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt") processed_outputs = super()._call_hf_processor( prompt=prompt, mm_data=mm_data, mm_kwargs=mm_kwargs, tok_kwargs=tok_kwargs, ) image_patches = processed_outputs["image_patches"] processed_outputs["image_patches"] = flatten_bn(image_patches) processed_outputs["patches_per_image"] = torch.tensor( [len(p) for p in image_patches] ) return processed_outputs def _apply_hf_processor_tokens_only( self, prompt_tokens: list[int], ) -> list[int]: # HF processor adds boa_token_id tokenizer = self.info.get_tokenizer() vocab = tokenizer.get_vocab() boa_token_id = vocab["<0x04>"] if prompt_tokens[-1] != boa_token_id: prompt_tokens.append(boa_token_id) return prompt_tokens def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: patches_per_image = hf_inputs.get("patches_per_image", torch.empty(0)) return dict( image_patches=MultiModalFieldConfig.flat_from_sizes( "image", patches_per_image ), patches_per_image=MultiModalFieldConfig.batched("image"), ) def _get_prompt_updates( self, mm_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], out_mm_kwargs: MultiModalKwargsItems, ) -> Sequence[PromptUpdate]: hf_config = self.info.get_hf_config() bos_token_id = hf_config.bos_token_id assert isinstance(bos_token_id, int) tokenizer = self.info.get_tokenizer() eot_token_id = tokenizer.bos_token_id assert isinstance(eot_token_id, int) def get_replacement_fuyu(item_idx: int): images = mm_items.get_items("image", ImageProcessorItems) image_size = images.get_image_size(item_idx) ncols, nrows = self.info.get_image_feature_grid_size( image_width=image_size.width, image_height=image_size.height, ) image_tokens = ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows return PromptUpdateDetails.select_token_id( image_tokens + [bos_token_id], embed_token_id=_IMAGE_TOKEN_ID, ) return [ PromptReplacement( modality="image", target=[eot_token_id], replacement=get_replacement_fuyu, ) ] @MULTIMODAL_REGISTRY.register_processor( FuyuMultiModalProcessor, info=FuyuProcessingInfo, dummy_inputs=FuyuDummyInputsBuilder, ) class FuyuForCausalLM(nn.Module, SupportsMultiModal, SupportsPP): merge_by_field_config = True hf_to_vllm_mapper = WeightsMapper( orig_to_new_prefix={ "model.vision_embed_tokens.": "vision_embed_tokens.", "model.language_model.": "language_model.model.", "lm_head.": "language_model.lm_head.", } ) @classmethod def get_placeholder_str(cls, modality: str, i: int) -> str | None: if modality.startswith("image"): return None raise ValueError("Only image modality is supported") def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config self.vocab_size = config.text_config.vocab_size self.image_token_id = _IMAGE_TOKEN_ID self.image_feature_size = config.patch_size**2 * config.num_channels self.vision_embed_tokens = ColumnParallelLinear( self.image_feature_size, config.hidden_size, quant_config=quant_config, gather_output=True, ) self.language_model = PersimmonForCausalLM( vllm_config=vllm_config.with_hf_config(config.text_config), prefix=maybe_prefix(prefix, "language_model"), ) self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors ) def _parse_and_validate_image_input( self, **kwargs: object ) -> FuyuImagePatchInputs | None: image_patches = kwargs.pop("image_patches", None) patches_per_image = kwargs.pop("patches_per_image", None) if image_patches is None: return None return FuyuImagePatchInputs( type="image_patches", image_patches_flat=image_patches, patches_per_image=patches_per_image, resolve_bindings={"fn": self.image_feature_size}, ) def _process_image_input( self, image_input: FuyuImagePatchInputs ) -> MultiModalEmbeddings: image_patches_flat = image_input["image_patches_flat"] patches_per_image = image_input["patches_per_image"] assert self.vision_embed_tokens is not None vision_embeddings_flat, _ = self.vision_embed_tokens(image_patches_flat) return vision_embeddings_flat.split(patches_per_image.tolist(), dim=0) def get_language_model(self) -> torch.nn.Module: return self.language_model def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings: image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return [] return self._process_image_input(image_input) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, **kwargs: object, ): if intermediate_tensors is not None: inputs_embeds = None hidden_states = self.language_model( input_ids=input_ids, positions=positions, intermediate_tensors=intermediate_tensors, inputs_embeds=inputs_embeds, ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.language_model.logits_processor( self.language_model.lm_head, hidden_states ) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights)