# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import functools import hashlib import json import os import sys import tempfile from collections.abc import Callable from typing import TYPE_CHECKING, Any, Literal if TYPE_CHECKING: VLLM_HOST_IP: str = "" VLLM_PORT: int | None = None VLLM_RPC_BASE_PATH: str = tempfile.gettempdir() VLLM_USE_MODELSCOPE: bool = False VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60 VLLM_NCCL_SO_PATH: str | None = None LD_LIBRARY_PATH: str | None = None VLLM_USE_TRITON_FLASH_ATTN: bool = True VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False VLLM_FLASH_ATTN_VERSION: int | None = None LOCAL_RANK: int = 0 CUDA_VISIBLE_DEVICES: str | None = None VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60 VLLM_API_KEY: str | None = None VLLM_DEBUG_LOG_API_SERVER_RESPONSE: bool = False S3_ACCESS_KEY_ID: str | None = None S3_SECRET_ACCESS_KEY: str | None = None S3_ENDPOINT_URL: str | None = None VLLM_MODEL_REDIRECT_PATH: str | None = None VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm") VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm") VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai" VLLM_NO_USAGE_STATS: bool = False VLLM_DISABLE_FLASHINFER_PREFILL: bool = False VLLM_DO_NOT_TRACK: bool = False VLLM_USAGE_SOURCE: str = "" VLLM_CONFIGURE_LOGGING: int = 1 VLLM_LOGGING_LEVEL: str = "INFO" VLLM_LOGGING_PREFIX: str = "" VLLM_LOGGING_STREAM: str = "ext://sys.stdout" VLLM_LOGGING_CONFIG_PATH: str | None = None VLLM_LOG_STATS_INTERVAL: float = 10.0 VLLM_TRACE_FUNCTION: int = 0 VLLM_ATTENTION_BACKEND: str | None = None VLLM_USE_FLASHINFER_SAMPLER: bool | None = None VLLM_PP_LAYER_PARTITION: str | None = None VLLM_CPU_KVCACHE_SPACE: int | None = 0 VLLM_CPU_OMP_THREADS_BIND: str = "" VLLM_CPU_NUM_OF_RESERVED_CPU: int | None = None VLLM_CPU_MOE_PREPACK: bool = True VLLM_CPU_SGL_KERNEL: bool = False VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache") VLLM_XLA_CHECK_RECOMPILATION: bool = False VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024 VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING: bool = True VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: Literal["auto", "nccl", "shm"] = "auto" VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False VLLM_USE_RAY_WRAPPED_PP_COMM: bool = True VLLM_XLA_USE_SPMD: bool = False VLLM_WORKER_MULTIPROC_METHOD: Literal["fork", "spawn"] = "fork" VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets") VLLM_ASSETS_CACHE_MODEL_CLEAN: bool = False VLLM_IMAGE_FETCH_TIMEOUT: int = 5 VLLM_VIDEO_FETCH_TIMEOUT: int = 30 VLLM_AUDIO_FETCH_TIMEOUT: int = 10 VLLM_MEDIA_URL_ALLOW_REDIRECTS: bool = True VLLM_MEDIA_LOADING_THREAD_COUNT: int = 8 VLLM_MAX_AUDIO_CLIP_FILESIZE_MB: int = 25 VLLM_VIDEO_LOADER_BACKEND: str = "opencv" VLLM_MEDIA_CONNECTOR: str = "http" VLLM_MM_INPUT_CACHE_GIB: int = 4 VLLM_TARGET_DEVICE: str = "cuda" VLLM_MAIN_CUDA_VERSION: str = "12.8" MAX_JOBS: str | None = None NVCC_THREADS: str | None = None VLLM_USE_PRECOMPILED: bool = False VLLM_DOCKER_BUILD_CONTEXT: bool = False VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL: bool = False VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False CMAKE_BUILD_TYPE: Literal["Debug", "Release", "RelWithDebInfo"] | None = None VERBOSE: bool = False VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False VLLM_RPC_TIMEOUT: int = 10000 # ms VLLM_HTTP_TIMEOUT_KEEP_ALIVE: int = 5 # seconds VLLM_PLUGINS: list[str] | None = None VLLM_LORA_RESOLVER_CACHE_DIR: str | None = None VLLM_TORCH_CUDA_PROFILE: bool = False VLLM_TORCH_PROFILER_DIR: str | None = None VLLM_TORCH_PROFILER_RECORD_SHAPES: bool = False VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY: bool = False VLLM_USE_AOT_COMPILE: bool = False VLLM_FORCE_AOT_LOAD: bool = False VLLM_TORCH_PROFILER_WITH_STACK: bool = True VLLM_TORCH_PROFILER_WITH_FLOPS: bool = False VLLM_USE_TRITON_AWQ: bool = False VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False VLLM_SKIP_P2P_CHECK: bool = False VLLM_DISABLED_KERNELS: list[str] = [] VLLM_DISABLE_PYNCCL: bool = False VLLM_USE_V1: bool = True VLLM_ROCM_USE_AITER: bool = False VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False VLLM_ROCM_USE_AITER_LINEAR: bool = True VLLM_ROCM_USE_AITER_MOE: bool = True VLLM_ROCM_USE_AITER_RMSNORM: bool = True VLLM_ROCM_USE_AITER_MLA: bool = True VLLM_ROCM_USE_AITER_MHA: bool = True VLLM_ROCM_USE_AITER_FP4_ASM_GEMM: bool = False VLLM_ROCM_USE_AITER_TRITON_ROPE: bool = False VLLM_ROCM_USE_AITER_FP8BMM: bool = True VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION: bool = False VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS: bool = True VLLM_ROCM_USE_AITER_TRITON_GEMM: bool = True VLLM_ROCM_USE_SKINNY_GEMM: bool = True VLLM_ROCM_FP8_PADDING: bool = True VLLM_ROCM_MOE_PADDING: bool = True VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True VLLM_ENABLE_V1_MULTIPROCESSING: bool = True VLLM_LOG_BATCHSIZE_INTERVAL: float = -1 VLLM_DISABLE_COMPILE_CACHE: bool = False Q_SCALE_CONSTANT: int = 200 K_SCALE_CONSTANT: int = 200 V_SCALE_CONSTANT: int = 100 VLLM_SERVER_DEV_MODE: bool = False VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128 VLLM_MLA_DISABLE: bool = False VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH: int = 32 VLLM_RAY_PER_WORKER_GPUS: float = 1.0 VLLM_RAY_BUNDLE_INDICES: str = "" VLLM_CUDART_SO_PATH: str | None = None VLLM_DP_RANK: int = 0 VLLM_DP_RANK_LOCAL: int = -1 VLLM_DP_SIZE: int = 1 VLLM_USE_STANDALONE_COMPILE: bool = True VLLM_DP_MASTER_IP: str = "" VLLM_DP_MASTER_PORT: int = 0 VLLM_MOE_DP_CHUNK_SIZE: int = 256 VLLM_RANDOMIZE_DP_DUMMY_INPUTS: bool = False VLLM_RAY_DP_PACK_STRATEGY: Literal["strict", "fill", "span"] = "strict" VLLM_MARLIN_USE_ATOMIC_ADD: bool = False VLLM_MXFP4_USE_MARLIN: bool | None = None VLLM_V1_USE_OUTLINES_CACHE: bool = False VLLM_TPU_BUCKET_PADDING_GAP: int = 0 VLLM_TPU_MOST_MODEL_LEN: int | None = None VLLM_TPU_USING_PATHWAYS: bool = False VLLM_USE_DEEP_GEMM: bool = True VLLM_MOE_USE_DEEP_GEMM: bool = True VLLM_USE_DEEP_GEMM_E8M0: bool = True VLLM_DEEP_GEMM_WARMUP: Literal[ "skip", "full", "relax", ] = "relax" VLLM_USE_FUSED_MOE_GROUPED_TOPK: bool = True VLLM_USE_FLASHINFER_MOE_FP16: bool = False VLLM_USE_FLASHINFER_MOE_FP8: bool = False VLLM_USE_FLASHINFER_MOE_FP4: bool = False VLLM_FLASHINFER_MOE_BACKEND: Literal["throughput", "latency"] = "latency" VLLM_XGRAMMAR_CACHE_MB: int = 0 VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256 VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False VLLM_NIXL_SIDE_CHANNEL_HOST: str = "localhost" VLLM_NIXL_SIDE_CHANNEL_PORT: int = 5600 VLLM_ALL2ALL_BACKEND: Literal[ "naive", "pplx", "deepep_high_throughput", "deepep_low_latency", "allgather_reducescatter", "flashinfer_all2allv", ] = "allgather_reducescatter" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE: int = 163840 VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1 VLLM_SLEEP_WHEN_IDLE: bool = False VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16 VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS: int = 300 VLLM_KV_CACHE_LAYOUT: Literal["NHD", "HND"] | None = None VLLM_COMPUTE_NANS_IN_LOGITS: bool = False VLLM_USE_NVFP4_CT_EMULATIONS: bool = False VLLM_ROCM_QUICK_REDUCE_QUANTIZATION: Literal[ "FP", "INT8", "INT6", "INT4", "NONE" ] = "NONE" VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16: bool = True VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB: int | None = None VLLM_NIXL_ABORT_REQUEST_TIMEOUT: int = 480 VLLM_USE_CUDNN_PREFILL: bool = False VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL: bool = False VLLM_ENABLE_CUDAGRAPH_GC: bool = False VLLM_LOOPBACK_IP: str = "" VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE: bool = False VLLM_ENABLE_RESPONSES_API_STORE: bool = False VLLM_USE_TRTLLM_ATTENTION: str | None = None VLLM_NVFP4_GEMM_BACKEND: str | None = None VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION: bool = False VLLM_HAS_FLASHINFER_CUBIN: bool = False VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8: bool = False VLLM_USE_FLASHINFER_MOE_MXFP4_BF16: bool = False VLLM_ROCM_FP8_MFMA_PAGE_ATTN: bool = False VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS: bool = False VLLM_ALLREDUCE_USE_SYMM_MEM: bool = False VLLM_TUNED_CONFIG_FOLDER: str | None = None VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS: set[str] = set() VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS: bool = False VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY: bool = False VLLM_CUSTOM_SCOPES_FOR_PROFILING: bool = False VLLM_NVTX_SCOPES_FOR_PROFILING: bool = False VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES: bool = True VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME: str = "VLLM_OBJECT_STORAGE_SHM_BUFFER" VLLM_DEEPEP_BUFFER_SIZE_MB: int = 1024 VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE: bool = False VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL: bool = False VLLM_DBO_COMM_SMS: int = 20 VLLM_PATTERN_MATCH_DEBUG: str | None = None VLLM_DEBUG_DUMP_PATH: str | None = None VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE: bool = True VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING: bool = True VLLM_USE_NCCL_SYMM_MEM: bool = False VLLM_NCCL_INCLUDE_PATH: str | None = None VLLM_USE_FBGEMM: bool = False VLLM_GC_DEBUG: str = "" VLLM_DISABLE_SHARED_EXPERTS_STREAM: bool = False VLLM_COMPILE_CACHE_SAVE_FORMAT: Literal["binary", "unpacked"] = "binary" VLLM_FLATTEN_LOGPROBS: bool = False def get_default_cache_root(): return os.getenv( "XDG_CACHE_HOME", os.path.join(os.path.expanduser("~"), ".cache"), ) def get_default_config_root(): return os.getenv( "XDG_CONFIG_HOME", os.path.join(os.path.expanduser("~"), ".config"), ) def maybe_convert_int(value: str | None) -> int | None: if value is None: return None return int(value) def maybe_convert_bool(value: str | None) -> bool | None: if value is None: return None return bool(int(value)) def disable_compile_cache() -> bool: return bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))) def use_aot_compile() -> bool: from vllm.model_executor.layers.batch_invariant import ( vllm_is_batch_invariant, ) from vllm.utils.torch_utils import is_torch_equal_or_newer default_value = ( "1" if is_torch_equal_or_newer("2.10.0.dev") and not disable_compile_cache() else "0" ) return ( not vllm_is_batch_invariant() and os.environ.get("VLLM_USE_AOT_COMPILE", default_value) == "1" ) def env_with_choices( env_name: str, default: str | None, choices: list[str] | Callable[[], list[str]], case_sensitive: bool = True, ) -> Callable[[], str | None]: """ Create a lambda that validates environment variable against allowed choices Args: env_name: Name of the environment variable default: Default value if not set (can be None) choices: List of valid string options or callable that returns list case_sensitive: Whether validation should be case sensitive Returns: Lambda function for environment_variables dict """ def _get_validated_env() -> str | None: value = os.getenv(env_name) if value is None: return default # Resolve choices if it's a callable (for lazy loading) actual_choices = choices() if callable(choices) else choices if not case_sensitive: check_value = value.lower() check_choices = [choice.lower() for choice in actual_choices] else: check_value = value check_choices = actual_choices if check_value not in check_choices: raise ValueError( f"Invalid value '{value}' for {env_name}. " f"Valid options: {actual_choices}." ) return value return _get_validated_env def env_list_with_choices( env_name: str, default: list[str], choices: list[str] | Callable[[], list[str]], case_sensitive: bool = True, ) -> Callable[[], list[str]]: """ Create a lambda that validates environment variable containing comma-separated values against allowed choices Args: env_name: Name of the environment variable default: Default list of values if not set choices: List of valid string options or callable that returns list case_sensitive: Whether validation should be case sensitive Returns: Lambda function for environment_variables dict that returns list of strings """ def _get_validated_env_list() -> list[str]: value = os.getenv(env_name) if value is None: return default # Split comma-separated values and strip whitespace values = [v.strip() for v in value.split(",") if v.strip()] if not values: return default # Resolve choices if it's a callable (for lazy loading) actual_choices = choices() if callable(choices) else choices # Validate each value for val in values: if not case_sensitive: check_value = val.lower() check_choices = [choice.lower() for choice in actual_choices] else: check_value = val check_choices = actual_choices if check_value not in check_choices: raise ValueError( f"Invalid value '{val}' in {env_name}. " f"Valid options: {actual_choices}." ) return values return _get_validated_env_list def env_set_with_choices( env_name: str, default: list[str], choices: list[str] | Callable[[], list[str]], case_sensitive: bool = True, ) -> Callable[[], set[str]]: """ Creates a lambda which that validates environment variable containing comma-separated values against allowed choices which returns choices as a set. """ def _get_validated_env_set() -> set[str]: return set(env_list_with_choices(env_name, default, choices, case_sensitive)()) return _get_validated_env_set def get_vllm_port() -> int | None: """Get the port from VLLM_PORT environment variable. Returns: The port number as an integer if VLLM_PORT is set, None otherwise. Raises: ValueError: If VLLM_PORT is a URI, suggest k8s service discovery issue. """ if "VLLM_PORT" not in os.environ: return None port = os.getenv("VLLM_PORT", "0") try: return int(port) except ValueError as err: from urllib.parse import urlparse parsed = urlparse(port) if parsed.scheme: raise ValueError( f"VLLM_PORT '{port}' appears to be a URI. " "This may be caused by a Kubernetes service discovery issue," "check the warning in: https://docs.vllm.ai/en/stable/serving/env_vars.html" ) from None raise ValueError(f"VLLM_PORT '{port}' must be a valid integer") from err # The begin-* and end* here are used by the documentation generator # to extract the used env vars. # --8<-- [start:env-vars-definition] environment_variables: dict[str, Callable[[], Any]] = { # ================== Installation Time Env Vars ================== # Target device of vLLM, supporting [cuda (by default), # rocm, cpu] "VLLM_TARGET_DEVICE": lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(), # Main CUDA version of vLLM, supporting [12.6, 12.8, 12.9], # 12.8 is the default. This follows PyTorch but can be overridden. "VLLM_MAIN_CUDA_VERSION": lambda: os.getenv("VLLM_MAIN_CUDA_VERSION", "").lower() or "12.8", # Maximum number of compilation jobs to run in parallel. # By default this is the number of CPUs "MAX_JOBS": lambda: os.getenv("MAX_JOBS", None), # Number of threads to use for nvcc # By default this is 1. # If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU. "NVCC_THREADS": lambda: os.getenv("NVCC_THREADS", None), # If set, vllm will use precompiled binaries (*.so) "VLLM_USE_PRECOMPILED": lambda: os.environ.get("VLLM_USE_PRECOMPILED", "") .strip() .lower() in ("1", "true") or bool(os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")), # Used to mark that setup.py is running in a Docker build context, # in order to force the use of precompiled binaries. "VLLM_DOCKER_BUILD_CONTEXT": lambda: os.environ.get("VLLM_DOCKER_BUILD_CONTEXT", "") .strip() .lower() in ("1", "true"), # Whether to force using nightly wheel in python build. # This is used for testing the nightly wheel in python build. "VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL": lambda: bool( int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0")) ), # CMake build type # If not set, defaults to "Debug" or "RelWithDebInfo" # Available options: "Debug", "Release", "RelWithDebInfo" "CMAKE_BUILD_TYPE": env_with_choices( "CMAKE_BUILD_TYPE", None, ["Debug", "Release", "RelWithDebInfo"] ), # If set, vllm will print verbose logs during installation "VERBOSE": lambda: bool(int(os.getenv("VERBOSE", "0"))), # Root directory for vLLM configuration files # Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set # Note that this not only affects how vllm finds its configuration files # during runtime, but also affects how vllm installs its configuration # files during **installation**. "VLLM_CONFIG_ROOT": lambda: os.path.expanduser( os.getenv( "VLLM_CONFIG_ROOT", os.path.join(get_default_config_root(), "vllm"), ) ), # ================== Runtime Env Vars ================== # Root directory for vLLM cache files # Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set "VLLM_CACHE_ROOT": lambda: os.path.expanduser( os.getenv( "VLLM_CACHE_ROOT", os.path.join(get_default_cache_root(), "vllm"), ) ), # used in distributed environment to determine the ip address # of the current node, when the node has multiple network interfaces. # If you are using multi-node inference, you should set this differently # on each node. "VLLM_HOST_IP": lambda: os.getenv("VLLM_HOST_IP", ""), # used in distributed environment to manually set the communication port # Note: if VLLM_PORT is set, and some code asks for multiple ports, the # VLLM_PORT will be used as the first port, and the rest will be generated # by incrementing the VLLM_PORT value. "VLLM_PORT": get_vllm_port, # path used for ipc when the frontend api server is running in # multi-processing mode to communicate with the backend engine process. "VLLM_RPC_BASE_PATH": lambda: os.getenv( "VLLM_RPC_BASE_PATH", tempfile.gettempdir() ), # If true, will load models from ModelScope instead of Hugging Face Hub. # note that the value is true or false, not numbers "VLLM_USE_MODELSCOPE": lambda: os.environ.get( "VLLM_USE_MODELSCOPE", "False" ).lower() == "true", # Interval in seconds to log a warning message when the ring buffer is full "VLLM_RINGBUFFER_WARNING_INTERVAL": lambda: int( os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60") ), # path to cudatoolkit home directory, under which should be bin, include, # and lib directories. "CUDA_HOME": lambda: os.environ.get("CUDA_HOME", None), # Path to the NCCL library file. It is needed because nccl>=2.19 brought # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234 "VLLM_NCCL_SO_PATH": lambda: os.environ.get("VLLM_NCCL_SO_PATH", None), # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl # library file in the locations specified by `LD_LIBRARY_PATH` "LD_LIBRARY_PATH": lambda: os.environ.get("LD_LIBRARY_PATH", None), # flag to control if vllm should use triton flash attention "VLLM_USE_TRITON_FLASH_ATTN": lambda: ( os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in ("true", "1") ), # Use separate prefill and decode kernels for V1 attention instead of # the unified triton kernel. "VLLM_V1_USE_PREFILL_DECODE_ATTENTION": lambda: ( os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower() in ("true", "1") ), # Force vllm to use a specific flash-attention version (2 or 3), only valid # when using the flash-attention backend. "VLLM_FLASH_ATTN_VERSION": lambda: maybe_convert_int( os.environ.get("VLLM_FLASH_ATTN_VERSION", None) ), # Feature flag to enable/disable Inductor standalone compile. # In torch <= 2.7 we ignore this flag; in torch >= 2.9 this is # enabled by default. "VLLM_USE_STANDALONE_COMPILE": lambda: os.environ.get( "VLLM_USE_STANDALONE_COMPILE", "1" ) == "1", # Debug pattern matching inside custom passes. # Should be set to the fx.Node name (e.g. 'getitem_34' or 'scaled_mm_3'). "VLLM_PATTERN_MATCH_DEBUG": lambda: os.environ.get( "VLLM_PATTERN_MATCH_DEBUG", None ), # Dump fx graphs to the given directory. # It will override CompilationConfig.debug_dump_path if set. "VLLM_DEBUG_DUMP_PATH": lambda: os.environ.get("VLLM_DEBUG_DUMP_PATH", None), # Feature flag to enable/disable AOT compilation. This will ensure # compilation is done in warmup phase and the compilation will be # reused in subsequent calls. "VLLM_USE_AOT_COMPILE": use_aot_compile, # Force vllm to always load AOT compiled models from disk. Failure # to load will result in a hard error when this is enabled. # Will be ignored when VLLM_USE_AOT_COMPILE is disabled. "VLLM_FORCE_AOT_LOAD": lambda: os.environ.get("VLLM_FORCE_AOT_LOAD", "0") == "1", # local rank of the process in the distributed setting, used to determine # the GPU device id "LOCAL_RANK": lambda: int(os.environ.get("LOCAL_RANK", "0")), # used to control the visible devices in the distributed setting "CUDA_VISIBLE_DEVICES": lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None), # timeout for each iteration in the engine "VLLM_ENGINE_ITERATION_TIMEOUT_S": lambda: int( os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60") ), # API key for vLLM API server "VLLM_API_KEY": lambda: os.environ.get("VLLM_API_KEY", None), # Whether to log responses from API Server for debugging "VLLM_DEBUG_LOG_API_SERVER_RESPONSE": lambda: os.environ.get( "VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False" ).lower() == "true", # S3 access information, used for tensorizer to load model from S3 "S3_ACCESS_KEY_ID": lambda: os.environ.get("S3_ACCESS_KEY_ID", None), "S3_SECRET_ACCESS_KEY": lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None), "S3_ENDPOINT_URL": lambda: os.environ.get("S3_ENDPOINT_URL", None), # Usage stats collection "VLLM_USAGE_STATS_SERVER": lambda: os.environ.get( "VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai" ), "VLLM_NO_USAGE_STATS": lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1", "VLLM_DISABLE_FLASHINFER_PREFILL": lambda: os.environ.get( "VLLM_DISABLE_FLASHINFER_PREFILL", "0" ) == "1", "VLLM_DO_NOT_TRACK": lambda: ( os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get("DO_NOT_TRACK", None) or "0" ) == "1", "VLLM_USAGE_SOURCE": lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"), # Logging configuration # If set to 0, vllm will not configure logging # If set to 1, vllm will configure logging using the default configuration # or the configuration file specified by VLLM_LOGGING_CONFIG_PATH "VLLM_CONFIGURE_LOGGING": lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")), "VLLM_LOGGING_CONFIG_PATH": lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"), # this is used for configuring the default logging level "VLLM_LOGGING_LEVEL": lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(), # this is used for configuring the default logging stream "VLLM_LOGGING_STREAM": lambda: os.getenv("VLLM_LOGGING_STREAM", "ext://sys.stdout"), # if set, VLLM_LOGGING_PREFIX will be prepended to all log messages "VLLM_LOGGING_PREFIX": lambda: os.getenv("VLLM_LOGGING_PREFIX", ""), # If set, vllm will log stats at this interval in seconds # If not set, vllm will log stats every 10 seconds. "VLLM_LOG_STATS_INTERVAL": lambda: val if (val := float(os.getenv("VLLM_LOG_STATS_INTERVAL", "10."))) > 0.0 else 10.0, # Trace function calls # If set to 1, vllm will trace function calls # Useful for debugging "VLLM_TRACE_FUNCTION": lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")), # Backend for attention computation # Example options: # - "TORCH_SDPA": use torch.nn.MultiheadAttention # - "FLASH_ATTN": use FlashAttention # - "XFORMERS": use XFormers # - "FLASHINFER": use flashinfer # - "FLASHMLA": use FlashMLA # - "FLASH_ATTN_MLA": use FlashAttention for MLA # - "FLASHINFER_MLA": use FlashInfer for MLA # - "CUTLASS_MLA": use CUTLASS for MLA # All possible options loaded dynamically from _Backend enum "VLLM_ATTENTION_BACKEND": env_with_choices( "VLLM_ATTENTION_BACKEND", None, lambda: list( __import__( "vllm.attention.backends.registry", fromlist=["_Backend"] )._Backend.__members__.keys() ), ), # If set, vllm will use flashinfer sampler "VLLM_USE_FLASHINFER_SAMPLER": lambda: bool( int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"]) ) if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ else None, # Pipeline stage partition strategy "VLLM_PP_LAYER_PARTITION": lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None), # (CPU backend only) CPU key-value cache space. # default is None and will be set as 4 GB "VLLM_CPU_KVCACHE_SPACE": lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")) if "VLLM_CPU_KVCACHE_SPACE" in os.environ else None, # (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31", # "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'. "VLLM_CPU_OMP_THREADS_BIND": lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"), # (CPU backend only) CPU cores not used by OMP threads . # Those CPU cores will not be used by OMP threads of a rank. "VLLM_CPU_NUM_OF_RESERVED_CPU": lambda: int( os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0") ) if "VLLM_CPU_NUM_OF_RESERVED_CPU" in os.environ else None, # (CPU backend only) whether to use prepack for MoE layer. This will be # passed to ipex.llm.modules.GatedMLPMOE. On unsupported CPUs, you might # need to set this to "0" (False). "VLLM_CPU_MOE_PREPACK": lambda: bool(int(os.getenv("VLLM_CPU_MOE_PREPACK", "1"))), # (CPU backend only) whether to use SGL kernels, optimized for small batch. "VLLM_CPU_SGL_KERNEL": lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))), # If the env var is set, Ray Compiled Graph uses the specified # channel type to communicate between workers belonging to # different pipeline-parallel stages. # Available options: # - "auto": use the default channel type # - "nccl": use NCCL for communication # - "shm": use shared memory and gRPC for communication "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE": env_with_choices( "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto", ["auto", "nccl", "shm"] ), # If the env var is set, it enables GPU communication overlap # (experimental feature) in Ray's Compiled Graph. "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM": lambda: bool( int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0")) ), # If the env var is set, it uses a Ray Communicator wrapping # vLLM's pipeline parallelism communicator to interact with Ray's # Compiled Graph. Otherwise, it uses Ray's NCCL communicator. "VLLM_USE_RAY_WRAPPED_PP_COMM": lambda: bool( int(os.getenv("VLLM_USE_RAY_WRAPPED_PP_COMM", "1")) ), # Use dedicated multiprocess context for workers. # Both spawn and fork work "VLLM_WORKER_MULTIPROC_METHOD": env_with_choices( "VLLM_WORKER_MULTIPROC_METHOD", "fork", ["spawn", "fork"] ), # Path to the cache for storing downloaded assets "VLLM_ASSETS_CACHE": lambda: os.path.expanduser( os.getenv( "VLLM_ASSETS_CACHE", os.path.join(get_default_cache_root(), "vllm", "assets"), ) ), # If the env var is set, we will clean model file in # this path $VLLM_ASSETS_CACHE/model_streamer/$model_name "VLLM_ASSETS_CACHE_MODEL_CLEAN": lambda: bool( int(os.getenv("VLLM_ASSETS_CACHE_MODEL_CLEAN", "0")) ), # Timeout for fetching images when serving multimodal models # Default is 5 seconds "VLLM_IMAGE_FETCH_TIMEOUT": lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")), # Timeout for fetching videos when serving multimodal models # Default is 30 seconds "VLLM_VIDEO_FETCH_TIMEOUT": lambda: int( os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30") ), # Timeout for fetching audio when serving multimodal models # Default is 10 seconds "VLLM_AUDIO_FETCH_TIMEOUT": lambda: int( os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10") ), # Whether to allow HTTP redirects when fetching from media URLs. # Default to True "VLLM_MEDIA_URL_ALLOW_REDIRECTS": lambda: bool( int(os.getenv("VLLM_MEDIA_URL_ALLOW_REDIRECTS", "1")) ), # Max number of workers for the thread pool handling # media bytes loading. Set to 1 to disable parallel processing. # Default is 8 "VLLM_MEDIA_LOADING_THREAD_COUNT": lambda: int( os.getenv("VLLM_MEDIA_LOADING_THREAD_COUNT", "8") ), # Maximum filesize in MB for a single audio file when processing # speech-to-text requests. Files larger than this will be rejected. # Default is 25 MB "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB": lambda: int( os.getenv("VLLM_MAX_AUDIO_CLIP_FILESIZE_MB", "25") ), # Backend for Video IO # - "opencv": Default backend that uses OpenCV stream buffered backend. # # Custom backend implementations can be registered # via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and # imported at runtime. # If a non-existing backend is used, an AssertionError will be thrown. "VLLM_VIDEO_LOADER_BACKEND": lambda: os.getenv( "VLLM_VIDEO_LOADER_BACKEND", "opencv" ), # Media connector implementation. # - "http": Default connector that supports fetching media via HTTP. # # Custom implementations can be registered # via `@MEDIA_CONNECTOR_REGISTRY.register("my_custom_media_connector")` and # imported at runtime. # If a non-existing backend is used, an AssertionError will be thrown. "VLLM_MEDIA_CONNECTOR": lambda: os.getenv("VLLM_MEDIA_CONNECTOR", "http"), # [DEPRECATED] Cache size (in GiB per process) for multimodal input cache # Default is 4 GiB per API process + 4 GiB per engine core process "VLLM_MM_INPUT_CACHE_GIB": lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")), # Path to the XLA persistent cache directory. # Only used for XLA devices such as TPUs. "VLLM_XLA_CACHE_PATH": lambda: os.path.expanduser( os.getenv( "VLLM_XLA_CACHE_PATH", os.path.join(get_default_cache_root(), "vllm", "xla_cache"), ) ), # If set, assert on XLA recompilation after each execution step. "VLLM_XLA_CHECK_RECOMPILATION": lambda: bool( int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0")) ), # Enable SPMD mode for TPU backend. "VLLM_XLA_USE_SPMD": lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))), "VLLM_FUSED_MOE_CHUNK_SIZE": lambda: int( os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768") ), # Control whether to use fused MoE activation chunking. Current chunking # logic is incompatible with torch.compile and causes IMA. See issue # https://github.com/vllm-project/vllm/issues/19631. "VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING": lambda: bool( int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1")) ), # If set, the OpenAI API server will stay alive even after the underlying # AsyncLLMEngine errors and stops serving requests "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH": lambda: bool( int(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", "0")) ), # If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows # the user to specify a max sequence length greater than # the max length derived from the model's config.json. # To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1. "VLLM_ALLOW_LONG_MAX_MODEL_LEN": lambda: ( os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in ("1", "true") ), # If set, forces FP8 Marlin to be used for FP8 quantization regardless # of the hardware support for FP8 compute. "VLLM_TEST_FORCE_FP8_MARLIN": lambda: ( os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in ("1", "true") ), "VLLM_TEST_FORCE_LOAD_FORMAT": lambda: os.getenv( "VLLM_TEST_FORCE_LOAD_FORMAT", "dummy" ), # Time in ms for the zmq client to wait for a response from the backend # server for simple data operations "VLLM_RPC_TIMEOUT": lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")), # Timeout in seconds for keeping HTTP connections alive in API server "VLLM_HTTP_TIMEOUT_KEEP_ALIVE": lambda: int( os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5") ), # a list of plugin names to load, separated by commas. # if this is not set, it means all plugins will be loaded # if this is set to an empty string, no plugins will be loaded "VLLM_PLUGINS": lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ["VLLM_PLUGINS"].split(","), # a local directory to look in for unrecognized LoRA adapters. # only works if plugins are enabled and # VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled. "VLLM_LORA_RESOLVER_CACHE_DIR": lambda: os.getenv( "VLLM_LORA_RESOLVER_CACHE_DIR", None ), # Enables torch CUDA profiling if set. # On NVIDIA GPUs, this will start/stop cudaProfilerApi when triggered. "VLLM_TORCH_CUDA_PROFILE": lambda: bool( os.getenv("VLLM_TORCH_CUDA_PROFILE", "0") != "0" ), # Enables torch profiler if set. # Both AsyncLLM's CPU traces as well as workers' # traces (CPU & GPU) will be saved under this directory. # Note that it must be an absolute path. "VLLM_TORCH_PROFILER_DIR": lambda: ( None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os.path.abspath( os.path.expanduser(os.getenv("VLLM_TORCH_PROFILER_DIR", ".")) ) ), # Enable torch profiler to record shapes if set # VLLM_TORCH_PROFILER_RECORD_SHAPES=1. If not set, torch profiler will # not record shapes. "VLLM_TORCH_PROFILER_RECORD_SHAPES": lambda: bool( os.getenv("VLLM_TORCH_PROFILER_RECORD_SHAPES", "0") != "0" ), # Enable torch profiler to profile memory if set # VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1. If not set, torch profiler # will not profile memory. "VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY": lambda: bool( os.getenv("VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY", "0") != "0" ), # Enable torch profiler to profile stack if set # VLLM_TORCH_PROFILER_WITH_STACK=1. If not set, torch profiler WILL # profile stack by default. "VLLM_TORCH_PROFILER_WITH_STACK": lambda: bool( os.getenv("VLLM_TORCH_PROFILER_WITH_STACK", "1") != "0" ), # Enable torch profiler to profile flops if set # VLLM_TORCH_PROFILER_WITH_FLOPS=1. If not set, torch profiler will # not profile flops. "VLLM_TORCH_PROFILER_WITH_FLOPS": lambda: bool( os.getenv("VLLM_TORCH_PROFILER_WITH_FLOPS", "0") != "0" ), # If set, vLLM will use Triton implementations of AWQ. "VLLM_USE_TRITON_AWQ": lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))), # If set, allow loading or unloading lora adapters in runtime, "VLLM_ALLOW_RUNTIME_LORA_UPDATING": lambda: ( os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in ("1", "true") ), # We assume drivers can report p2p status correctly. # If the program hangs when using custom allreduce, # potantially caused by a bug in the driver (535 series), # if might be helpful to set VLLM_SKIP_P2P_CHECK=0 # so that vLLM can verify if p2p is actually working. # See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa "VLLM_SKIP_P2P_CHECK": lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "1") == "1", # List of quantization kernels that should be disabled, used for testing # and performance comparisons. Currently only affects MPLinearKernel # selection # (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel) "VLLM_DISABLED_KERNELS": lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ["VLLM_DISABLED_KERNELS"].split(","), # Disable pynccl (using torch.distributed instead) "VLLM_DISABLE_PYNCCL": lambda: ( os.getenv("VLLM_DISABLE_PYNCCL", "False").lower() in ("true", "1") ), # If set, use the V1 code path. "VLLM_USE_V1": lambda: bool(int(os.getenv("VLLM_USE_V1", "1"))), # Disable aiter ops unless specifically enabled. # Acts as a parent switch to enable the rest of the other operations. "VLLM_ROCM_USE_AITER": lambda: ( os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in ("true", "1") ), # Whether to use aiter paged attention. # By default is disabled. "VLLM_ROCM_USE_AITER_PAGED_ATTN": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in ("true", "1") ), # use aiter linear op if aiter ops are enabled # The following list of related ops # - scaled_mm (per-tensor / rowwise) "VLLM_ROCM_USE_AITER_LINEAR": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in ("true", "1") ), # Whether to use aiter moe ops. # By default is enabled. "VLLM_ROCM_USE_AITER_MOE": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in ("true", "1") ), # use aiter rms norm op if aiter ops are enabled. "VLLM_ROCM_USE_AITER_RMSNORM": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in ("true", "1") ), # Whether to use aiter mla ops. # By default is enabled. "VLLM_ROCM_USE_AITER_MLA": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in ("true", "1") ), # Whether to use aiter mha ops. # By default is enabled. "VLLM_ROCM_USE_AITER_MHA": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in ("true", "1") ), # Whether to use aiter fp4 gemm asm. # By default is disabled. "VLLM_ROCM_USE_AITER_FP4_ASM_GEMM": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_FP4_ASM_GEMM", "False").lower() in ("true", "1") ), # Whether to use aiter rope. # By default is disabled. "VLLM_ROCM_USE_AITER_TRITON_ROPE": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_TRITON_ROPE", "False").lower() in ("true", "1") ), # Whether to use aiter triton fp8 bmm kernel # By default is enabled. "VLLM_ROCM_USE_AITER_FP8BMM": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_FP8BMM", "True").lower() in ("true", "1") ), # Use AITER triton unified attention for V1 attention "VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION", "False").lower() in ("true", "1") ), # Whether to use aiter fusion shared experts ops. # By default is enabled. "VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS", "True").lower() in ("true", "1") ), # Whether to use aiter triton kernels for gemm ops. # By default is enabled. "VLLM_ROCM_USE_AITER_TRITON_GEMM": lambda: ( os.getenv("VLLM_ROCM_USE_AITER_TRITON_GEMM", "True").lower() in ("true", "1") ), # use rocm skinny gemms "VLLM_ROCM_USE_SKINNY_GEMM": lambda: ( os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in ("true", "1") ), # Pad the fp8 weights to 256 bytes for ROCm "VLLM_ROCM_FP8_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))), # Pad the weights for the moe kernel "VLLM_ROCM_MOE_PADDING": lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))), # custom paged attention kernel for MI3* cards "VLLM_ROCM_CUSTOM_PAGED_ATTN": lambda: ( os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in ("true", "1") ), # Custom quick allreduce kernel for MI3* cards # Choice of quantization level: FP, INT8, INT6, INT4 or NONE # Recommended for large models to get allreduce "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION": env_with_choices( "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", "NONE", ["FP", "INT8", "INT6", "INT4", "NONE"], ), # Custom quick allreduce kernel for MI3* cards # Due to the lack of the bfloat16 asm instruction, bfloat16 # kernels are slower than fp16, # If environment variable is set to 1, the input is converted to fp16 "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16": lambda: ( os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower() in ("true", "1") ), # Custom quick allreduce kernel for MI3* cards. # Controls the maximum allowed number of data bytes(MB) for custom quick # allreduce communication. # Default: 2048 MB. # Data exceeding this size will use either custom allreduce or RCCL # communication. "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB": lambda: maybe_convert_int( os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None) ), # Divisor for dynamic query scale factor calculation for FP8 KV Cache "Q_SCALE_CONSTANT": lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")), # Divisor for dynamic key scale factor calculation for FP8 KV Cache "K_SCALE_CONSTANT": lambda: int(os.getenv("K_SCALE_CONSTANT", "200")), # Divisor for dynamic value scale factor calculation for FP8 KV Cache "V_SCALE_CONSTANT": lambda: int(os.getenv("V_SCALE_CONSTANT", "100")), # If set, enable multiprocessing in LLM for the V1 code path. "VLLM_ENABLE_V1_MULTIPROCESSING": lambda: bool( int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1")) ), "VLLM_LOG_BATCHSIZE_INTERVAL": lambda: float( os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1") ), "VLLM_DISABLE_COMPILE_CACHE": disable_compile_cache, # If set, vllm will run in development mode, which will enable # some additional endpoints for developing and debugging, # e.g. `/reset_prefix_cache` "VLLM_SERVER_DEV_MODE": lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))), # Controls the maximum number of requests to handle in a # single asyncio task when processing per-token outputs in the # V1 AsyncLLM interface. It is applicable when handling a high # concurrency of streaming requests. # Setting this too high can result in a higher variance of # inter-message latencies. Setting it too low can negatively impact # TTFT and overall throughput. "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE": lambda: int( os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128") ), # If set, vLLM will disable the MLA attention optimizations. "VLLM_MLA_DISABLE": lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))), # If set, vLLM will pick up the provided Flash Attention MLA # max number splits for cuda graph decode "VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": lambda: int( os.getenv("VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH", "32") ), # Number of GPUs per worker in Ray, if it is set to be a fraction, # it allows ray to schedule multiple actors on a single GPU, # so that users can colocate other actors on the same GPUs as vLLM. "VLLM_RAY_PER_WORKER_GPUS": lambda: float( os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0") ), # Bundle indices for Ray, if it is set, it can control precisely # which indices are used for the Ray bundle, for every worker. # Format: comma-separated list of integers, e.g. "0,1,2,3" "VLLM_RAY_BUNDLE_INDICES": lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""), # In some system, find_loaded_library() may not work. So we allow users to # specify the path through environment variable VLLM_CUDART_SO_PATH. "VLLM_CUDART_SO_PATH": lambda: os.getenv("VLLM_CUDART_SO_PATH", None), # Rank of the process in the data parallel setting "VLLM_DP_RANK": lambda: int(os.getenv("VLLM_DP_RANK", "0")), # Rank of the process in the data parallel setting. # Defaults to VLLM_DP_RANK when not set. "VLLM_DP_RANK_LOCAL": lambda: int( os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK) ), # World size of the data parallel setting "VLLM_DP_SIZE": lambda: int(os.getenv("VLLM_DP_SIZE", "1")), # IP address of the master node in the data parallel setting "VLLM_DP_MASTER_IP": lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"), # Port of the master node in the data parallel setting "VLLM_DP_MASTER_PORT": lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")), # In the context of executing MoE models with Data-Parallel, Expert-Parallel # and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE # dictates the quantum of tokens that can be dispatched from a DP # rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE # units. "VLLM_MOE_DP_CHUNK_SIZE": lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")), # Randomize inputs during dummy runs when using Data Parallel "VLLM_RANDOMIZE_DP_DUMMY_INPUTS": lambda: os.environ.get( "VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0" ) == "1", # Strategy to pack the data parallel ranks for Ray. # Available options: # - "fill": # for DP master node, allocate exactly data-parallel-size-local DP ranks, # for non-master nodes, allocate as many DP ranks as can fit; # - "strict": # allocate exactly data-parallel-size-local DP ranks to each picked node; # - "span": # Should be used only when a single DP rank requires multiple nodes. # allocate one DP rank over as many nodes as required for set world_size; # This environment variable is ignored if data-parallel-backend is not Ray. "VLLM_RAY_DP_PACK_STRATEGY": lambda: os.getenv( "VLLM_RAY_DP_PACK_STRATEGY", "strict" ), # Whether to use S3 path for model loading in CI via RunAI Streamer "VLLM_CI_USE_S3": lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1", # Use model_redirect to redirect the model name to a local folder. # `model_redirect` can be a json file mapping the model between # repo_id and local folder: # {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"} # or a space separated values table file: # meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B "VLLM_MODEL_REDIRECT_PATH": lambda: os.environ.get( "VLLM_MODEL_REDIRECT_PATH", None ), # Whether to use atomicAdd reduce in gptq/awq marlin kernel. "VLLM_MARLIN_USE_ATOMIC_ADD": lambda: os.environ.get( "VLLM_MARLIN_USE_ATOMIC_ADD", "0" ) == "1", # Whether to use marlin kernel in mxfp4 quantization method "VLLM_MXFP4_USE_MARLIN": lambda: maybe_convert_bool( os.environ.get("VLLM_MXFP4_USE_MARLIN", None) ), # Whether to turn on the outlines cache for V1 # This cache is unbounded and on disk, so it's not safe to use in # an environment with potentially malicious users. "VLLM_V1_USE_OUTLINES_CACHE": lambda: os.environ.get( "VLLM_V1_USE_OUTLINES_CACHE", "0" ) == "1", # Gap between padding buckets for the forward pass. So we have # 8, we will run forward pass with [16, 24, 32, ...]. "VLLM_TPU_BUCKET_PADDING_GAP": lambda: int( os.environ["VLLM_TPU_BUCKET_PADDING_GAP"] ) if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ else 0, "VLLM_TPU_MOST_MODEL_LEN": lambda: maybe_convert_int( os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None) ), # Whether using Pathways "VLLM_TPU_USING_PATHWAYS": lambda: bool( "proxy" in os.getenv("JAX_PLATFORMS", "").lower() ), # Allow use of DeepGemm kernels for fused moe ops. "VLLM_USE_DEEP_GEMM": lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "1"))), # Allow use of DeepGemm specifically for MoE fused ops (overrides only MoE). "VLLM_MOE_USE_DEEP_GEMM": lambda: bool( int(os.getenv("VLLM_MOE_USE_DEEP_GEMM", "1")) ), # Whether to use E8M0 scaling when DeepGEMM is used on Blackwell GPUs. "VLLM_USE_DEEP_GEMM_E8M0": lambda: bool( int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0", "1")) ), # DeepGemm JITs the kernels on-demand. The warmup attempts to make DeepGemm # JIT all the required kernels before model execution so there is no # JIT'ing in the hot-path. However, this warmup increases the engine # startup time by a couple of minutes. # Available options: # - "skip" : Skip warmup. # - "full" : Warmup deepgemm by running all possible gemm shapes the # engine could encounter. # - "relax" : Select gemm shapes to run based on some heuristics. The # heuristic aims to have the same effect as running all possible gemm # shapes, but provides no guarantees. "VLLM_DEEP_GEMM_WARMUP": env_with_choices( "VLLM_DEEP_GEMM_WARMUP", "relax", [ "skip", "full", "relax", ], ), # Whether to use fused grouped_topk used for MoE expert selection. "VLLM_USE_FUSED_MOE_GROUPED_TOPK": lambda: bool( int(os.getenv("VLLM_USE_FUSED_MOE_GROUPED_TOPK", "1")) ), # Allow use of FlashInfer MoE kernels for fused moe ops. "VLLM_USE_FLASHINFER_MOE_FP16": lambda: bool( int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP16", "0")) ), # Allow use of FlashInfer MoE kernels for fused moe ops. "VLLM_USE_FLASHINFER_MOE_FP8": lambda: bool( int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0")) ), # Allow use of FlashInfer CUTLASS kernels for fused moe ops. "VLLM_USE_FLASHINFER_MOE_FP4": lambda: bool( int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0")) ), # If set to 1, use the FlashInfer # MXFP8 (activation) x MXFP4 (weight) MoE backend. "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8": lambda: bool( int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "0")) ), # If set to 1, use the FlashInfer CUTLASS backend for # MXFP8 (activation) x MXFP4 (weight) MoE. # This is separate from the TRTLLMGEN path controlled by # VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8. "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS": lambda: bool( int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS", "0")) ), # If set to 1, use the FlashInfer # BF16 (activation) x MXFP4 (weight) MoE backend. "VLLM_USE_FLASHINFER_MOE_MXFP4_BF16": lambda: bool( int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "0")) ), # Control the cache sized used by the xgrammar compiler. The default # of 512 MB should be enough for roughly 1000 JSON schemas. # It can be changed with this variable if needed for some reason. "VLLM_XGRAMMAR_CACHE_MB": lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")), # Control the threshold for msgspec to use 'zero copy' for # serialization/deserialization of tensors. Tensors below # this limit will be encoded into the msgpack buffer, and # tensors above will instead be sent via a separate message. # While the sending side still actually copies the tensor # in all cases, on the receiving side, tensors above this # limit will actually be zero-copy decoded. "VLLM_MSGPACK_ZERO_COPY_THRESHOLD": lambda: int( os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256") ), # If set, allow insecure serialization using pickle. # This is useful for environments where it is deemed safe to use the # insecure method and it is needed for some reason. "VLLM_ALLOW_INSECURE_SERIALIZATION": lambda: bool( int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0")) ), # IP address used for NIXL handshake between remote agents. "VLLM_NIXL_SIDE_CHANNEL_HOST": lambda: os.getenv( "VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost" ), # Port used for NIXL handshake between remote agents. "VLLM_NIXL_SIDE_CHANNEL_PORT": lambda: int( os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5600") ), # all2all backend for vllm's expert parallel communication # Available options: # - "naive": naive all2all implementation using broadcasts # - "allgather_reducescatter": all2all implementation based on allgather and # reducescatter # - "pplx": use pplx kernels # - "deepep_high_throughput", use deepep high-throughput kernels # - "deepep_low_latency", use deepep low-latency kernels # - "flashinfer_all2allv", use flashinfer alltoallv kernels for mnnvl "VLLM_ALL2ALL_BACKEND": env_with_choices( "VLLM_ALL2ALL_BACKEND", "allgather_reducescatter", [ "naive", "pplx", "deepep_high_throughput", "deepep_low_latency", "allgather_reducescatter", "flashinfer_all2allv", ], ), # Flashinfer MoE backend for vLLM's fused Mixture-of-Experts support. # Both require compute capability 10.0 or above. # Available options: # - "throughput": [default] # Uses CUTLASS kernels optimized for high-throughput batch inference. # - "latency": # Uses TensorRT-LLM kernels optimized for low-latency inference. "VLLM_FLASHINFER_MOE_BACKEND": env_with_choices( "VLLM_FLASHINFER_MOE_BACKEND", "latency", ["throughput", "latency"] ), # Control the maximum number of tokens per expert supported by the # NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for # the blockscale tensor of activations NVFP4 Quantization. # This is used to prevent the kernel from running out of memory. "VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE": lambda: int( os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840") ), # Specifies the thresholds of the communicated tensor sizes under which # vllm should use flashinfer fused allreduce. The variable should be a # JSON with the following format: # { : } # Unspecified world sizes will fall back to # { 2: 64, 4: 1, : 0.5 } "VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB": lambda: json.loads( os.getenv("VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB", "{}") ), # MoE routing strategy selector. # See `RoutingSimulator.get_available_strategies()` # for available # strategies. # Cutstom routing strategies can be registered by # RoutingSimulator.register_strategy() # Note: custom strategies may not produce correct model outputs "VLLM_MOE_ROUTING_SIMULATION_STRATEGY": lambda: os.environ.get( "VLLM_MOE_ROUTING_SIMULATION_STRATEGY", "" ).lower(), # Regex timeout for use by the vLLM tool parsing plugins. "VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS": lambda: int( os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1") ), # Reduce CPU usage when vLLM is idle. Enabling this will incur small # latency penalty when a request eventually comes. "VLLM_SLEEP_WHEN_IDLE": lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))), # Control the max chunk bytes (in MB) for the rpc message queue. # Object larger than this threshold will be broadcast to worker # processes via zmq. "VLLM_MQ_MAX_CHUNK_BYTES_MB": lambda: int( os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16") ), # Timeout in seconds for execute_model RPC calls in multiprocessing # executor (only applies when TP > 1). "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS": lambda: int( os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300") ), # KV Cache layout used throughout vllm. # Some common values are: # - NHD # - HND # Where N=num_blocks, H=num_heads and D=head_size. The default value will # leave the layout choice to the backend. Mind that backends may only # implement and support a subset of all possible layouts. "VLLM_KV_CACHE_LAYOUT": env_with_choices( "VLLM_KV_CACHE_LAYOUT", None, ["NHD", "HND"] ), # Enable checking whether the generated logits contain NaNs, # indicating corrupted output. Useful for debugging low level bugs # or bad hardware but it may add compute overhead. "VLLM_COMPUTE_NANS_IN_LOGITS": lambda: bool( int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0")) ), # Controls whether or not emulations are used for NVFP4 # generations on machines < 100 for compressed-tensors # models "VLLM_USE_NVFP4_CT_EMULATIONS": lambda: bool( int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0")) ), # Time (in seconds) after which the KV cache on the producer side is # automatically cleared if no READ notification is received from the # consumer. This is only applicable when using NixlConnector in a # disaggregated decode-prefill setup. "VLLM_NIXL_ABORT_REQUEST_TIMEOUT": lambda: int( os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "480") ), # Controls whether or not to use cudnn prefill "VLLM_USE_CUDNN_PREFILL": lambda: bool( int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0")) ), # Controls whether to use TRT-LLM ragged DeepSeek prefill "VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL": lambda: bool( int(os.getenv("VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL", "0")) ), # If set to 1/True, use the TRTLLM attention backend in flashinfer. # If set to 0/False, use the default attention backend in flashinfer. # If not set, auto-detect the attention backend in flashinfer. "VLLM_USE_TRTLLM_ATTENTION": lambda: ( None if "VLLM_USE_TRTLLM_ATTENTION" not in os.environ else os.environ["VLLM_USE_TRTLLM_ATTENTION"].lower() in ("1", "true") ), # If set to 1, when we use fp8 kv, we do not quantize Q to fp8 "VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION": lambda: bool( int(os.getenv("VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION", "0")) ), # If set, it means we pre-downloaded cubin files and flashinfer will # read the cubin files directly. "VLLM_HAS_FLASHINFER_CUBIN": lambda: bool( int(os.getenv("VLLM_HAS_FLASHINFER_CUBIN", "0")) ), # Supported options: # - "flashinfer-cudnn": use flashinfer cudnn GEMM backend # - "flashinfer-trtllm": use flashinfer trtllm GEMM backend # - "flashinfer-cutlass": use flashinfer cutlass GEMM backend # - : automatically pick an available backend "VLLM_NVFP4_GEMM_BACKEND": env_with_choices( "VLLM_NVFP4_GEMM_BACKEND", None, ["flashinfer-cudnn", "flashinfer-trtllm", "flashinfer-cutlass", "cutlass"], ), # Controls garbage collection during CUDA graph capture. # If set to 0 (default), enables GC freezing to speed up capture time. # If set to 1, allows GC to run during capture. "VLLM_ENABLE_CUDAGRAPH_GC": lambda: bool( int(os.getenv("VLLM_ENABLE_CUDAGRAPH_GC", "0")) ), # Used to force set up loopback IP "VLLM_LOOPBACK_IP": lambda: os.getenv("VLLM_LOOPBACK_IP", ""), # Used to set the process name prefix for vLLM processes. # This is useful for debugging and monitoring purposes. # The default value is "VLLM". "VLLM_PROCESS_NAME_PREFIX": lambda: os.getenv("VLLM_PROCESS_NAME_PREFIX", "VLLM"), # Allow chunked local attention with hybrid kv cache manager. # Currently using the Hybrid KV cache manager with chunked local attention # in the Llama4 models (the only models currently using chunked local attn) # causes a latency regression. For this reason, we disable it by default. # This flag is used to allow users to enable it if they want to (to save on # kv-cache memory usage and enable longer contexts) # TODO(lucas): Remove this flag once latency regression is resolved. "VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE": lambda: bool( int(os.getenv("VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE", "0")) ), # Enables support for the "store" option in the OpenAI Responses API. # When set to 1, vLLM's OpenAI server will retain the input and output # messages for those requests in memory. By default, this is disabled (0), # and the "store" option is ignored. # NOTE/WARNING: # 1. Messages are kept in memory only (not persisted to disk) and will be # lost when the vLLM server shuts down. # 2. Enabling this option will cause a memory leak, as stored messages are # never removed from memory until the server terminates. "VLLM_ENABLE_RESPONSES_API_STORE": lambda: bool( int(os.getenv("VLLM_ENABLE_RESPONSES_API_STORE", "0")) ), # If set, use the fp8 mfma in rocm paged attention. "VLLM_ROCM_FP8_MFMA_PAGE_ATTN": lambda: bool( int(os.getenv("VLLM_ROCM_FP8_MFMA_PAGE_ATTN", "0")) ), # Whether to use pytorch symmetric memory for allreduce "VLLM_ALLREDUCE_USE_SYMM_MEM": lambda: bool( int(os.getenv("VLLM_ALLREDUCE_USE_SYMM_MEM", "0")) ), # Allows vllm to find tuned config under customized folder "VLLM_TUNED_CONFIG_FOLDER": lambda: os.getenv("VLLM_TUNED_CONFIG_FOLDER", None), # Valid values are container,code_interpreter,web_search_preview # ex VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS=container,code_interpreter # If the server_label of your mcp tool is not in this list it will # be completely ignored. "VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS": env_set_with_choices( "VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS", default=[], choices=["container", "code_interpreter", "web_search_preview"], ), # Allows harmony instructions to be injected on system messages "VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS": lambda: bool( int(os.getenv("VLLM_GPT_OSS_HARMONY_SYSTEM_INSTRUCTIONS", "0")) ), # Enable automatic retry when tool call JSON parsing fails # If enabled, returns an error message to the model to retry # If disabled (default), raises an exception and fails the request "VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY": lambda: bool( int(os.getenv("VLLM_TOOL_JSON_ERROR_AUTOMATIC_RETRY", "0")) ), # Add optional custom scopes for profiling, disable to avoid overheads "VLLM_CUSTOM_SCOPES_FOR_PROFILING": lambda: bool( int(os.getenv("VLLM_CUSTOM_SCOPES_FOR_PROFILING", "0")) ), # Add optional nvtx scopes for profiling, disable to avoid overheads "VLLM_NVTX_SCOPES_FOR_PROFILING": lambda: bool( int(os.getenv("VLLM_NVTX_SCOPES_FOR_PROFILING", "0")) ), # Represent block hashes in KV cache events as 64-bit integers instead of # raw bytes. Defaults to True for backward compatibility. "VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES": lambda: bool( int(os.getenv("VLLM_KV_EVENTS_USE_INT_BLOCK_HASHES", "1")) ), # Name of the shared memory buffer used for object storage. # Only effective when mm_config.mm_processor_cache_type == "shm". "VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME": lambda: os.getenv( "VLLM_OBJECT_STORAGE_SHM_BUFFER_NAME", "VLLM_OBJECT_STORAGE_SHM_BUFFER" ), # The size in MB of the buffers (NVL and RDMA) used by DeepEP "VLLM_DEEPEP_BUFFER_SIZE_MB": lambda: int( os.getenv("VLLM_DEEPEP_BUFFER_SIZE_MB", "1024") ), # Force DeepEP to use intranode kernel for inter-node communication in # high throughput mode. This is useful archive higher prefill throuhgput # on system supports multi-node nvlink (e.g GB200). "VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE": lambda: bool( int(os.getenv("VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE", "0")) ), # Allow DeepEP to use MNNVL (multi-node nvlink) for internode_ll kernel, # turn this for better latency on GB200 like system "VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL": lambda: bool( int(os.getenv("VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL", "0")) ), # The number of SMs to allocate for communication kernels when running DBO # the rest of the SMs on the device will be allocated to compute "VLLM_DBO_COMM_SMS": lambda: int(os.getenv("VLLM_DBO_COMM_SMS", "20")), # Enable max_autotune & coordinate_descent_tuning in inductor_config # to compile static shapes passed from compile_sizes in compilation_config # If set to 1, enable max_autotune; By default, this is enabled (1) "VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE": lambda: bool( int(os.getenv("VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE", "1")) ), # If set to 1, enable coordinate_descent_tuning; # By default, this is enabled (1) "VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING": lambda: bool( int(os.getenv("VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING", "1")) ), # Flag to enable NCCL symmetric memory allocation and registration "VLLM_USE_NCCL_SYMM_MEM": lambda: bool( int(os.getenv("VLLM_USE_NCCL_SYMM_MEM", "0")) ), # NCCL header path "VLLM_NCCL_INCLUDE_PATH": lambda: os.environ.get("VLLM_NCCL_INCLUDE_PATH", None), # Flag to enable FBGemm kernels on model execution "VLLM_USE_FBGEMM": lambda: bool(int(os.getenv("VLLM_USE_FBGEMM", "0"))), # GC debug config # - VLLM_GC_DEBUG=0: disable GC debugger # - VLLM_GC_DEBUG=1: enable GC debugger with gc.collect elpased times # - VLLM_GC_DEBUG='{"top_objects":5}': enable GC debugger with # top 5 collected objects "VLLM_GC_DEBUG": lambda: os.getenv("VLLM_GC_DEBUG", ""), # Disables parallel execution of shared_experts via separate cuda stream "VLLM_DISABLE_SHARED_EXPERTS_STREAM": lambda: bool( int(os.getenv("VLLM_DISABLE_SHARED_EXPERTS_STREAM", "0")) ), # Format for saving torch.compile cache artifacts # - "binary": saves as binary file # Safe for multiple vllm serve processes accessing the same torch compile cache. # - "unpacked": saves as directory structure (for inspection/debugging) # NOT multiprocess safe - race conditions may occur with multiple processes. # Allows viewing and setting breakpoints in Inductor's code output files. "VLLM_COMPILE_CACHE_SAVE_FORMAT": env_with_choices( "VLLM_COMPILE_CACHE_SAVE_FORMAT", "binary", ["binary", "unpacked"] ), # Flag to enable FlattenLogprobs whose GC overhead is significantly smaller than # the original list[dict[int, Logprob]] approach. # After enabled, PromptLogprobs and SampleLogprobs would populated as # FlattenLogprobs. "VLLM_FLATTEN_LOGPROBS": lambda: bool(int(os.getenv("VLLM_FLATTEN_LOGPROBS", "0"))), } # --8<-- [end:env-vars-definition] def __getattr__(name: str): """ Gets environment variables lazily. NOTE: After enable_envs_cache() invocation (which triggered after service initialization), all environment variables will be cached. """ if name in environment_variables: return environment_variables[name]() raise AttributeError(f"module {__name__!r} has no attribute {name!r}") def enable_envs_cache() -> None: """ Enables caching of environment variables. This is useful for performance reasons, as it avoids the need to re-evaluate environment variables on every call. NOTE: Currently, it's invoked after service initialization to reduce runtime overhead. This also means that environment variables should NOT be updated after the service is initialized. """ # Tag __getattr__ with functools.cache global __getattr__ __getattr__ = functools.cache(__getattr__) # Cache all environment variables for key in environment_variables: __getattr__(key) def __dir__(): return list(environment_variables.keys()) def is_set(name: str): """Check if an environment variable is explicitly set.""" if name in environment_variables: return name in os.environ raise AttributeError(f"module {__name__!r} has no attribute {name!r}") def set_vllm_use_v1(use_v1: bool): if is_set("VLLM_USE_V1"): raise ValueError( "Should not call set_vllm_use_v1() if VLLM_USE_V1 is set " "explicitly by the user. Please raise this as a Github " "Issue and explicitly set VLLM_USE_V1=0 or 1." ) os.environ["VLLM_USE_V1"] = "1" if use_v1 else "0" def compute_hash() -> str: """ WARNING: Whenever a new key is added to this environment variables, ensure that it is included in the factors list if it affects the computation graph. For example, different values of VLLM_PP_LAYER_PARTITION will generate different computation graphs, so it is included in the factors list. The env vars that affect the choice of different kernels or attention backends should also be included in the factors list. """ # The values of envs may affects the computation graph. # TODO(DefTruth): hash all environment variables? # for key in environment_variables: # factorize(key) environment_variables_to_hash = [ "VLLM_PP_LAYER_PARTITION", "VLLM_MLA_DISABLE", "VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH", "VLLM_USE_TRITON_FLASH_ATTN", "VLLM_USE_TRITON_AWQ", "VLLM_DP_RANK", "VLLM_DP_SIZE", "VLLM_USE_STANDALONE_COMPILE", "VLLM_FUSED_MOE_CHUNK_SIZE", "VLLM_FLASHINFER_MOE_BACKEND", "VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "VLLM_ATTENTION_BACKEND", "VLLM_USE_FLASHINFER_SAMPLER", "VLLM_DISABLED_KERNELS", "VLLM_USE_DEEP_GEMM", "VLLM_MOE_USE_DEEP_GEMM", "VLLM_USE_DEEP_GEMM_E8M0", "VLLM_USE_FUSED_MOE_GROUPED_TOPK", "VLLM_USE_FLASHINFER_MOE_FP16", "VLLM_USE_FLASHINFER_MOE_FP8", "VLLM_USE_FLASHINFER_MOE_FP4", "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS", "VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "VLLM_USE_CUDNN_PREFILL", "VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL", "VLLM_USE_TRTLLM_ATTENTION", "VLLM_FLASHINFER_DISABLE_Q_QUANTIZATION", "VLLM_ROCM_USE_AITER", "VLLM_ROCM_USE_AITER_PAGED_ATTN", "VLLM_ROCM_USE_AITER_LINEAR", "VLLM_ROCM_USE_AITER_MOE", "VLLM_ROCM_USE_AITER_RMSNORM", "VLLM_ROCM_USE_AITER_MLA", "VLLM_ROCM_USE_AITER_MHA", "VLLM_ROCM_USE_AITER_FP4_ASM_GEMM", "VLLM_ROCM_USE_AITER_TRITON_ROPE", "VLLM_ROCM_USE_AITER_FP8BMM", "VLLM_ROCM_USE_AITER_UNIFIED_ATTENTION", "VLLM_ROCM_USE_AITER_TRITON_GEMM", "VLLM_ROCM_USE_SKINNY_GEMM", "VLLM_ROCM_FP8_PADDING", "VLLM_ROCM_MOE_PADDING", "VLLM_ROCM_CUSTOM_PAGED_ATTN", "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", "VLLM_ROCM_FP8_MFMA_PAGE_ATTN", "VLLM_ENABLE_INDUCTOR_MAX_AUTOTUNE", "VLLM_ENABLE_INDUCTOR_COORDINATE_DESCENT_TUNING", "VLLM_NVFP4_GEMM_BACKEND", "VLLM_USE_FBGEMM", "VLLM_DEEPEP_HIGH_THROUGHPUT_FORCE_INTRA_NODE", "VLLM_DEEPEP_LOW_LATENCY_USE_MNNVL", ] for key in environment_variables_to_hash: # if this goes out of sync with environment_variables, # it's not a user error, it's a bug assert key in environment_variables, ( "Please update environment_variables_to_hash in envs.py" ) factors = [environment_variables[key]() for key in environment_variables_to_hash] ray_noset_env_vars = [ # Refer to # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/nvidia_gpu.py#L11 # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/amd_gpu.py#L11 # https://github.com/ray-project/ray/blob/b97d21dab233c2bd8ed7db749a82a1e594222b5c/python/ray/_private/accelerators/amd_gpu.py#L10 # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/npu.py#L12 # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/hpu.py#L12 # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/neuron.py#L14 # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/tpu.py#L38 # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/intel_gpu.py#L10 # https://github.com/ray-project/ray/blob/c584b1ea97b00793d1def71eaf81537d70efba42/python/ray/_private/accelerators/rbln.py#L10 "RAY_EXPERIMENTAL_NOSET_CUDA_VISIBLE_DEVICES", "RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES", "RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES", "RAY_EXPERIMENTAL_NOSET_ASCEND_RT_VISIBLE_DEVICES", "RAY_EXPERIMENTAL_NOSET_HABANA_VISIBLE_MODULES", "RAY_EXPERIMENTAL_NOSET_NEURON_RT_VISIBLE_CORES", "RAY_EXPERIMENTAL_NOSET_TPU_VISIBLE_CHIPS", "RAY_EXPERIMENTAL_NOSET_ONEAPI_DEVICE_SELECTOR", "RAY_EXPERIMENTAL_NOSET_RBLN_RT_VISIBLE_DEVICES", ] factors.extend([os.getenv(var) for var in ray_noset_env_vars]) hash_str = hashlib.md5(str(factors).encode(), usedforsecurity=False).hexdigest() return hash_str