# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/inclusionAI/Ling/blob/master/models/modeling_bailing_moe.py # Copyright 2023 The vLLM team. # Copyright 2023 Antgroup and The HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only BailingMoE model compatible with HuggingFace weights.""" from collections.abc import Iterable from itertools import islice import torch import torch.nn.functional as F from torch import nn from transformers.configuration_utils import PretrainedConfig from vllm.attention.layer import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import ( get_pp_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.fused_moe import SharedFusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.sequence import IntermediateTensors from .interfaces import SupportsLoRA, SupportsPP from .utils import ( AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix, ) class BailingAttention(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, reduce_results: bool = True, prefix: str = "", ): super().__init__() self.hidden_size = config.hidden_size self.total_num_heads = config.num_attention_heads self.total_kv_heads = config.num_key_value_heads tp_size = get_tensor_model_parallel_world_size() assert self.total_num_heads % tp_size == 0 assert self.total_num_heads >= self.total_kv_heads self.num_heads = self.total_num_heads // tp_size self.head_dim = config.head_dim or (self.hidden_size // self.total_num_heads) self.q_size_per_rank = self.head_dim * self.num_heads self.num_kv_heads = max(1, self.total_kv_heads // tp_size) self.kv_size_per_rank = self.num_kv_heads * self.head_dim self.scale = self.head_dim**-0.5 self.use_qk_norm = getattr(config, "use_qk_norm", False) self.use_rmsnorm = getattr(config, "use_rmsnorm", False) self.query_key_value = QKVParallelLinear( self.hidden_size, self.head_dim, self.total_num_heads, self.total_kv_heads, bias=(config.use_bias or config.use_qkv_bias), quant_config=quant_config, prefix=f"{prefix}.query_key_value", ) if self.use_qk_norm: self.query_layernorm = ( RMSNorm(self.head_dim, eps=config.rms_norm_eps) if self.use_rmsnorm else nn.LayerNorm(self.head_dim, eps=1e-6) ) self.key_layernorm = ( RMSNorm(self.head_dim, eps=config.rms_norm_eps) if self.use_rmsnorm else nn.LayerNorm(self.head_dim, eps=1e-6) ) self.dense = RowParallelLinear( self.total_num_heads * self.head_dim, self.hidden_size, bias=config.use_bias, quant_config=quant_config, reduce_results=reduce_results, prefix=f"{prefix}.dense", ) self.partial_rotary_factor = getattr(config, "partial_rotary_factor", 1.0) self.rotary_dim = getattr(config, "rotary_dim", self.head_dim) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.rotary_dim, max_position=config.max_position_embeddings, rope_parameters=config.rope_parameters, is_neox_style=True, partial_rotary_factor=self.partial_rotary_factor, ) self.attn = Attention( self.num_heads, self.head_dim, self.scale, num_kv_heads=self.num_kv_heads, cache_config=cache_config, prefix=f"{prefix}.attn", ) def forward( self, hidden_states: torch.Tensor, position_ids: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.query_key_value(hidden_states) q, k, v = qkv.split( [self.q_size_per_rank, self.kv_size_per_rank, self.kv_size_per_rank], dim=-1 ) if self.use_qk_norm: q = q.view(-1, self.num_heads, self.head_dim) k = k.view(-1, self.num_kv_heads, self.head_dim) q = self.query_layernorm(q) k = self.key_layernorm(k) q = q.view(-1, self.q_size_per_rank) k = k.view(-1, self.kv_size_per_rank) q, k = self.rotary_emb(position_ids, q, k) context_layer = self.attn(q, k, v) attn_output, _ = self.dense(context_layer) return attn_output class BailingMLP(nn.Module): def __init__( self, intermediate_size: int, config: PretrainedConfig, quant_config: QuantizationConfig | None = None, reduce_results: bool | None = True, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( config.hidden_size, [intermediate_size] * 2, bias=config.use_bias, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( intermediate_size, config.hidden_size, bias=config.use_bias, quant_config=quant_config, reduce_results=reduce_results, prefix=f"{prefix}.down_proj", ) self.act_fn = SiluAndMul() def forward(self, x): x, _ = self.gate_up_proj(x) x = self.act_fn(x) x, _ = self.down_proj(x) return x class BailingMoE(nn.Module): def __init__( self, intermediate_size: int, config: PretrainedConfig, quant_config: QuantizationConfig | None = None, reduce_results: bool | None = True, prefix: str = "", ): super().__init__() self.tp_size = get_tensor_model_parallel_world_size() self.tp_rank = get_tensor_model_parallel_rank() self.num_experts = config.num_experts self.top_k = config.num_experts_per_tok self.norm_expert_prob = config.norm_topk_prob self.hidden_size = config.hidden_size self.quant_config = quant_config self.num_shared_experts = config.num_shared_experts self.score_function = getattr(config, "score_function", None) self.n_group = getattr(config, "n_group", None) self.topk_group = getattr(config, "topk_group", None) self.use_grouped_topk = self.n_group is not None and self.topk_group is not None self.routed_scaling_factor = getattr(config, "routed_scaling_factor", 1.0) router_dtype = getattr(config, "router_dtype", None) if router_dtype is None: self.router_dtype = None elif router_dtype == "fp32": self.router_dtype = torch.float32 else: self.router_dtype = torch.bfloat16 self.gate = nn.Linear( self.hidden_size, self.num_experts, bias=False, dtype=self.router_dtype, ) if getattr(config, "moe_router_enable_expert_bias", False): self.gate.expert_bias = nn.Parameter( torch.empty((config.num_experts,), dtype=torch.float32) ) else: self.gate.expert_bias = None self.correction_bias = ( self.gate.expert_bias.data if self.gate.expert_bias is not None else None ) if self.score_function is not None: assert ( self.score_function == "softmax" and self.correction_bias is None ) or ( self.score_function == "sigmoid" and self.correction_bias is not None ), ( "score_function and correction_bias should be in 2 combination (softmax, None) or (sigmoid, not None)" # noqa: E501 ) else: # default value for scoring_func self.score_function = "softmax" if self.num_shared_experts > 0: if hasattr(config, "moe_shared_expert_intermediate_size"): intermediate_size = config.moe_shared_expert_intermediate_size else: intermediate_size = config.moe_intermediate_size intermediate_size *= config.num_shared_experts self.shared_experts = BailingMLP( intermediate_size=intermediate_size, config=config, quant_config=quant_config, reduce_results=False, prefix=f"{prefix}.shared_experts", ) else: self.shared_experts = None self.experts = SharedFusedMoE( shared_experts=self.shared_experts, num_experts=self.num_experts, top_k=self.top_k, hidden_size=self.hidden_size, intermediate_size=config.moe_intermediate_size, reduce_results=False, renormalize=self.norm_expert_prob, quant_config=quant_config, prefix=f"{prefix}.experts", scoring_func=self.score_function, e_score_correction_bias=self.gate.expert_bias, num_expert_group=self.n_group, topk_group=self.topk_group, use_grouped_topk=self.use_grouped_topk, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_size = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_size) # router_logits: (num_tokens, n_experts) router_logits = self.gate(hidden_states.to(self.router_dtype)) router_logits = router_logits.to(hidden_states.dtype) final_hidden_states = self.experts( hidden_states=hidden_states, router_logits=router_logits ) if self.shared_experts is not None: shared_output, final_hidden_states = final_hidden_states else: shared_output = None final_hidden_states *= self.routed_scaling_factor if shared_output is not None: final_hidden_states = final_hidden_states + shared_output if self.tp_size > 1: final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel( final_hidden_states ) return final_hidden_states.view(num_tokens, hidden_size) class BailingMoeBlock(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: CacheConfig | None = None, quant_config: QuantizationConfig | None = None, prefix: str = "", ): super().__init__() layer_idx = int(prefix.split(".")[-1]) self.config = config hidden_size = config.hidden_size intermediate_size = config.intermediate_size self.input_layernorm = RMSNorm(hidden_size, eps=config.rms_norm_eps) self.attention = BailingAttention( config, cache_config, quant_config, prefix=f"{prefix}.attention" ) self.post_attention_layernorm = RMSNorm(hidden_size, eps=config.rms_norm_eps) # Choose MLP class based on the number of experts and layer index if layer_idx < config.first_k_dense_replace: mlp_class = BailingMLP else: mlp_class = BailingMoE self.mlp = mlp_class( intermediate_size, config, quant_config, True, prefix=f"{prefix}.mlp" ) def forward( self, hidden_states: torch.Tensor, position_ids: torch.Tensor, residual: torch.Tensor | None, ) -> torch.Tensor: if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.attention( hidden_states=hidden_states, position_ids=position_ids, ) hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual @support_torch_compile class BailingMoeModel(nn.Module): def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", ): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.vocab_size = config.vocab_size self.embed_dim = config.hidden_size self.tie_word_embeddings = getattr(config, "tie_word_embeddings", False) if get_pp_group().is_first_rank or ( self.tie_word_embeddings and get_pp_group().is_last_rank ): self.word_embeddings = VocabParallelEmbedding( self.vocab_size, self.embed_dim, quant_config=quant_config, prefix=f"{prefix}.word_embeddings", ) else: self.word_embeddings = PPMissingLayer() self.embedding_dropout = torch.nn.Dropout(config.embedding_dropout) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: BailingMoeBlock( config=config, cache_config=cache_config, quant_config=quant_config, prefix=prefix, ), prefix=f"{prefix}.layers", ) self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size ) if get_pp_group().is_last_rank: self.norm = RMSNorm(self.embed_dim, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.word_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, intermediate_tensors: IntermediateTensors | None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.embed_input_ids(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states, residual = layer( hidden_states, position_ids, residual, ) if not get_pp_group().is_last_rank: return IntermediateTensors( {"hidden_states": hidden_states, "residual": residual} ) else: if residual is None: hidden_states = self.norm(hidden_states) else: hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: return SharedFusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.num_experts, ) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: set[str] = set() expert_params_mapping = self.get_expert_mapping() for name, loaded_weight in weights: if ( hasattr(self.config, "norm_head") and self.config.norm_head and "lm_head.weight" in name ): loaded_weight = F.normalize(loaded_weight, dim=0, p=2, eps=1e-7) for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue if "mlp.experts" in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) if is_pp_missing_parameter(name, self): continue if name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader( param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id, ) break else: if name.endswith(".bias") and name not in params_dict: continue if name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class BailingMoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA): packed_modules_mapping = { "query_key_value": ["query_key_value"], "gate_up_proj": [ "gate_proj", "up_proj", ], } def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", ) -> None: super().__init__() config = vllm_config.model_config.hf_config.get_text_config() vllm_config.model_config.hf_config = config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.max_position_embeddings = config.max_position_embeddings self.model = BailingMoeModel( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) self.tie_word_embeddings = getattr(config, "tie_word_embeddings", False) if get_pp_group().is_last_rank: if self.tie_word_embeddings: self.lm_head = self.model.word_embeddings else: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) self.logits_processor = LogitsProcessor(config.vocab_size) else: self.lm_head = PPMissingLayer() self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors ) def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.embed_input_ids(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: IntermediateTensors | None = None, inputs_embeds: torch.Tensor | None = None, ) -> torch.Tensor | IntermediateTensors: model_output = self.model( input_ids, positions, intermediate_tensors, inputs_embeds ) return model_output def compute_logits( self, hidden_states: torch.Tensor, ) -> torch.Tensor | None: logits = self.logits_processor(self.lm_head, hidden_states) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.tie_word_embeddings else None), ) return loader.load_weights(weights) def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: return self.model.get_expert_mapping() class BailingMoeV2ForCausalLM(BailingMoeForCausalLM): pass