# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from vllm.config import VllmConfig from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.models.llama import ( LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, ) class TeleFLMModel(LlamaModel): def __init__( self, *, vllm_config: VllmConfig, prefix: str = "", layer_type: type[nn.Module] = LlamaDecoderLayer, ): super().__init__(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type) """ This implementation is based on the µScaling paper presented at the ICLR 2025 Workshop: NanoLM: An Affordable LLM Study Benchmark \ via Accurate Loss Prediction across Scales by Yiqun Yao et al. Available at: https://openreview.net/forum?id=IwaPYg1SCA arXiv preprint: https://arxiv.org/abs/2304.06875 """ self.use_mup = self.config.use_mup if self.use_mup: self.input_mult = self.config.input_mult def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor: embedding = self.embed_tokens(input_ids) if self.use_mup: embedding = embedding * self.input_mult return embedding class TeleFLMForCausalLM(LlamaForCausalLM): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__(vllm_config=vllm_config, prefix=prefix) # mup self.use_mup = self.config.use_mup if self.use_mup: self.mup_scale_factor = self.config.mup_scale_factor self.output_mult = self.config.output_mult / self.mup_scale_factor logit_scale = self.output_mult self.logits_processor = LogitsProcessor( self.config.vocab_size, scale=logit_scale )