# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import regex as re import requests from tests.utils import RemoteOpenAIServer # Prometheus metrics utilities for testing def get_prometheus_metrics(server: RemoteOpenAIServer) -> dict[str, dict[str, float]]: """Fetch and parse Prometheus metrics from the /metrics endpoint. Returns: Dict mapping metric names to their values grouped by labels. For example: {"vllm:request_success": { "engine=0": 5.0, "engine=1": 3.0} } """ try: response = requests.get(server.url_for("metrics"), timeout=10) response.raise_for_status() metrics: dict[str, dict[str, float]] = {} # Regex patterns for Prometheus metrics metric_with_labels = re.compile( r"^([a-zA-Z_:][a-zA-Z0-9_:]*)\{([^}]*)\}\s+([\d\.\-\+e]+)$" ) metric_simple = re.compile(r"^([a-zA-Z_:][a-zA-Z0-9_:]*)\s+([\d\.\-\+e]+)$") for line in response.text.split("\n"): line = line.strip() # Skip comments and empty lines if not line or line.startswith("#"): continue # Try to match metric with labels first match = metric_with_labels.match(line) if match: metric_name, labels_part, value_str = match.groups() try: value = float(value_str) if metric_name not in metrics: metrics[metric_name] = {} metrics[metric_name][f"{{{labels_part}}}"] = value except ValueError: continue else: # Try simple metric without labels match = metric_simple.match(line) if match: metric_name, value_str = match.groups() try: value = float(value_str) if metric_name not in metrics: metrics[metric_name] = {} metrics[metric_name][""] = value except ValueError: continue return metrics except Exception as e: pytest.fail(f"Failed to fetch Prometheus metrics: {e}") return {} def get_engine_request_counts(metrics: dict[str, dict[str, float]]) -> dict[str, float]: """Extract request counts per engine from Prometheus metrics. Returns: Dict mapping engine indices to request counts. For example: {"0": 15.0, "1": 12.0} """ engine_counts = {} # Look for request success metrics with engine labels success_metrics = metrics.get("vllm:request_success_total", {}) engine_pattern = re.compile(r'engine="([^"]*)"') for labels, count in success_metrics.items(): # Extract engine ID from labels using regex match = engine_pattern.search(labels) if match: engine_id = match.group(1) if engine_id not in engine_counts: engine_counts[engine_id] = 0.0 engine_counts[engine_id] += count return engine_counts def check_request_balancing(server: RemoteOpenAIServer, dp_size: int): """Check request balancing via Prometheus metrics if dp_size > 1. Args: server: The RemoteOpenAIServer instance dp_size: Number of data parallel ranks """ if dp_size <= 1: return # Get metrics after all requests are completed metrics = get_prometheus_metrics(server) engine_counts = get_engine_request_counts(metrics) # Check that multiple engines received requests engines_with_requests = [ engine for engine, count in engine_counts.items() if count > 0 ] assert len(engines_with_requests) == dp_size, ( f"Expected requests to be distributed across multiple engines," f" but only engine(s) {engines_with_requests} received " f"requests. Engine counts: {engine_counts}" ) # Verify that the load is reasonably balanced # (no engine should handle all requests) total_requests = sum(engine_counts.values()) for count in engine_counts.values(): assert count > total_requests // (dp_size + 1), ( f"requests are imbalanced: {engine_counts}" )