# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from dataclasses import dataclass from typing import ClassVar import torch import vllm.envs as envs from vllm.attention.backends.abstract import AttentionLayer from vllm.attention.ops.rocm_aiter_mla import aiter_mla_decode_fwd from vllm.config import VllmConfig from vllm.utils.math_utils import cdiv from vllm.v1.attention.backends.mla.common import ( MLACommonBackend, MLACommonDecodeMetadata, MLACommonImpl, MLACommonMetadata, MLACommonMetadataBuilder, ) from vllm.v1.attention.backends.utils import AttentionCGSupport from vllm.v1.kv_cache_interface import AttentionSpec def is_aiter_mla_enabled() -> bool: return envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_MLA class AiterMLABackend(MLACommonBackend): @staticmethod def get_name() -> str: return "ROCM_AITER_MLA" @staticmethod def get_impl_cls() -> type["AiterMLAImpl"]: return AiterMLAImpl @staticmethod def get_builder_cls() -> type["AiterMLAMetadataBuilder"]: return AiterMLAMetadataBuilder @dataclass class AiterMLADecodeMetadata(MLACommonDecodeMetadata): # The indptr of the paged kv cache, shape: [batch_size + 1] paged_kv_indptr: torch.Tensor | None = None # The page indices of the paged kv cache paged_kv_indices: torch.Tensor | None = None # The number of entries in the last page of each request in # the paged kv cache, shape: [batch_size] paged_kv_last_page_len: torch.Tensor | None = None # The query indptr, shape : [num_decode + 1] qo_indptr: torch.Tensor | None = None class AiterMLAMetadata(MLACommonMetadata[AiterMLADecodeMetadata]): pass class AiterMLAMetadataBuilder(MLACommonMetadataBuilder[AiterMLAMetadata]): # TODO(luka, lucas): audit this as part of: # https://github.com/vllm-project/vllm/issues/22945 cudagraph_support: ClassVar[AttentionCGSupport] = ( AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE ) def __init__( self, kv_cache_spec: AttentionSpec, layer_names: list[str], vllm_config: VllmConfig, device: torch.device, ): super().__init__( kv_cache_spec, layer_names, vllm_config, device, AiterMLAMetadata ) self.compilation_config = vllm_config.compilation_config max_num_pages_per_req = cdiv( vllm_config.model_config.max_model_len, self.kv_cache_spec.block_size ) max_num_reqs = vllm_config.scheduler_config.max_num_seqs max_num_pages = max_num_reqs * max_num_pages_per_req # Preparing persistent buffers # TODO: we can disambiguate between decode and mixed-prefill decode here # so we can only use the persistent buffer if a cudagraph is actually # being used. if self.compilation_config.cudagraph_mode.has_full_cudagraphs(): self.block_table_remapping = torch.zeros( [max_num_reqs, max_num_pages_per_req * self.kv_cache_spec.block_size], dtype=torch.int32, device=device, ) self.paged_kv_indptr = torch.zeros( max_num_reqs + 1, dtype=torch.int32, device=device ) self.paged_kv_indices = torch.zeros( max_num_pages, dtype=torch.int32, device=device ) self.paged_kv_last_page_len = torch.zeros( max_num_reqs, dtype=torch.int32, device=device ) self.qo_indptr = torch.arange( 0, max_num_reqs + 1, dtype=torch.int32, device=device ) def _build_decode( self, block_table_tensor: torch.Tensor, seq_lens_cpu: torch.Tensor, seq_lens_device: torch.Tensor, query_start_loc_cpu: torch.Tensor, query_start_loc_device: torch.Tensor, num_decode_tokens: int, dcp_tot_seq_lens_device: torch.Tensor | None, ) -> AiterMLADecodeMetadata: page_size = self.kv_cache_spec.block_size device = self.device num_reqs = seq_lens_device.size(0) bs, _ = block_table_tensor.shape block_table_tensor = ( block_table_tensor.unsqueeze(-1).expand(-1, -1, page_size) * page_size ) block_table_tensor = ( block_table_tensor + torch.arange( 0, page_size, device=block_table_tensor.device, dtype=block_table_tensor.dtype, )[None, None, :] ) block_table_tensor = block_table_tensor.view(bs, -1) # after remapping, we assume the block size already equals to 1 max_blk_size_per_req = block_table_tensor.shape[-1] mask = torch.arange( block_table_tensor.size(1), dtype=block_table_tensor.dtype, device=device ).unsqueeze(0) < seq_lens_device.unsqueeze(1) paged_kv_indices = block_table_tensor[mask] paged_kv_last_page_len = seq_lens_device % page_size paged_kv_last_page_len = torch.where( paged_kv_last_page_len == 0, page_size, paged_kv_last_page_len ) paged_kv_indptr = torch.cat( [ torch.zeros(1, dtype=seq_lens_device.dtype, device=device), seq_lens_device.cumsum(dim=0, dtype=torch.int32), ] ) if self.compilation_config.cudagraph_mode.has_full_cudagraphs(): num_actual_pages = paged_kv_indices.size(0) self.block_table_remapping[:num_reqs, :max_blk_size_per_req].copy_( block_table_tensor, non_blocking=True ) block_table_tensor = self.block_table_remapping[ :num_reqs, :max_blk_size_per_req ] self.paged_kv_indices[:num_actual_pages].copy_( paged_kv_indices, non_blocking=True ) self.paged_kv_indices[num_actual_pages:].fill_(-1) paged_kv_indices = self.paged_kv_indices[:num_actual_pages] self.paged_kv_indptr[: 1 + num_reqs].copy_( paged_kv_indptr, non_blocking=True ) self.paged_kv_indptr[1 + num_reqs :].fill_(paged_kv_indptr[-1]) paged_kv_indptr = self.paged_kv_indptr[: 1 + num_reqs] self.paged_kv_last_page_len[:num_reqs].copy_( paged_kv_last_page_len, non_blocking=True ) self.paged_kv_last_page_len[num_reqs:].fill_(1) paged_kv_last_page_len = self.paged_kv_last_page_len[:num_reqs] qo_indptr = self.qo_indptr[: 1 + num_reqs] else: qo_indptr = torch.arange( 0, num_reqs + 1, step=1, dtype=torch.int32, device=device ) attn_metadata = AiterMLADecodeMetadata( block_table=block_table_tensor, seq_lens=seq_lens_device, paged_kv_indptr=paged_kv_indptr, paged_kv_indices=paged_kv_indices, paged_kv_last_page_len=paged_kv_last_page_len, qo_indptr=qo_indptr, dcp_tot_seq_lens=dcp_tot_seq_lens_device, ) return attn_metadata class AiterMLAImpl(MLACommonImpl[AiterMLAMetadata]): def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: int, alibi_slopes: list[float] | None, sliding_window: int | None, kv_cache_dtype: str, logits_soft_cap: float | None, attn_type: str, kv_sharing_target_layer_name: str | None, # MLA Specific Arguments **mla_args, ) -> None: super().__init__( num_heads, head_size, scale, num_kv_heads, alibi_slopes, sliding_window, kv_cache_dtype, logits_soft_cap, attn_type, kv_sharing_target_layer_name, **mla_args, ) assert num_heads == 16 or num_heads == 128, ( f"Aiter MLA only supports 16 or 128 number of heads.\n" f"Provided {num_heads} number of heads.\n" "Try adjusting tensor_parallel_size value." ) unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap] if any(unsupported_features): raise NotImplementedError( "Aiter MLA does not support one of the following: " "alibi_slopes, sliding_window, logits_soft_cap" ) from aiter import flash_attn_varlen_func self.flash_attn_varlen_func = flash_attn_varlen_func def _flash_attn_varlen_diff_headdims( self, q, k, v, return_softmax_lse=False, softmax_scale=None, **kwargs ): output = self.flash_attn_varlen_func( q=q, k=k, v=v, softmax_scale=softmax_scale, return_lse=return_softmax_lse, **kwargs, ) return output def _forward_decode( self, q: torch.Tensor | tuple[torch.Tensor, torch.Tensor], kv_c_and_k_pe_cache: torch.Tensor, attn_metadata: AiterMLAMetadata, layer: AttentionLayer, ) -> tuple[torch.Tensor, torch.Tensor | None]: assert kv_c_and_k_pe_cache.numel() > 0 assert attn_metadata.decode is not None if type(q) is tuple: q = torch.cat(q, dim=-1) assert isinstance(q, torch.Tensor) B = q.shape[0] o = torch.zeros( B, self.num_heads, self.kv_lora_rank, dtype=q.dtype, device=q.device ) kv_buffer = kv_c_and_k_pe_cache.unsqueeze(2) # max_seqlen_qo must be 1 except for MTP # TODO: Find the best value for MTP max_seqlen_qo = 1 aiter_mla_decode_fwd( q, kv_buffer, o, self.scale, attn_metadata.decode.qo_indptr, max_seqlen_qo, attn_metadata.decode.paged_kv_indptr, attn_metadata.decode.paged_kv_indices, attn_metadata.decode.paged_kv_last_page_len, ) return o, None