# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import warnings from collections.abc import Mapping from typing import Literal, Optional import pytest from mistral_common.tokens.tokenizers.base import (SpecialTokenPolicy, SpecialTokens) from mistral_common.tokens.tokenizers.tekken import (SpecialTokenInfo, Tekkenizer) from vllm.assets.audio import AudioAsset from vllm.assets.image import ImageAsset from vllm.assets.video import VideoAsset from vllm.config import ModelConfig from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template, parse_chat_messages, parse_chat_messages_futures, resolve_chat_template_content_format, resolve_hf_chat_template) from vllm.entrypoints.llm import apply_hf_chat_template from vllm.multimodal import MultiModalDataDict, MultiModalUUIDDict from vllm.multimodal.utils import (encode_audio_base64, encode_image_base64, encode_video_base64) from vllm.transformers_utils.tokenizer_group import TokenizerGroup from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer from ..models.registry import HF_EXAMPLE_MODELS from ..utils import VLLM_PATH EXAMPLES_DIR = VLLM_PATH / "examples" PHI3V_MODEL_ID = "microsoft/Phi-3.5-vision-instruct" ULTRAVOX_MODEL_ID = "fixie-ai/ultravox-v0_5-llama-3_2-1b" QWEN2AUDIO_MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct" QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct" QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct" QWEN25OMNI_MODEL_ID = "Qwen/Qwen2.5-Omni-7B" MLLAMA_MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct" LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B" HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B" MISTRAL_MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503" @pytest.fixture(scope="function") def phi3v_model_config(): return ModelConfig( PHI3V_MODEL_ID, runner="generate", trust_remote_code=True, limit_mm_per_prompt={ "image": 2, }, ) @pytest.fixture(scope="function") def phi3v_model_config_mm_interleaved(): return ModelConfig( PHI3V_MODEL_ID, runner="generate", trust_remote_code=True, interleave_mm_strings=True, limit_mm_per_prompt={ "image": 2, }, ) @pytest.fixture(scope="module") def phi3v_tokenizer(): return TokenizerGroup( tokenizer_id=PHI3V_MODEL_ID, enable_lora=False, max_num_seqs=5, max_input_length=None, ) @pytest.fixture(scope="function") def qwen25omni_model_config_mm_interleaved(): return ModelConfig( QWEN25OMNI_MODEL_ID, runner="generate", interleave_mm_strings=True, limit_mm_per_prompt={ "image": 2, "audio": 1, "video": 1, }, ) @pytest.fixture(scope="module") def qwen25omni_tokenizer(): return TokenizerGroup( tokenizer_id=QWEN25OMNI_MODEL_ID, enable_lora=False, max_num_seqs=5, max_input_length=None, ) @pytest.fixture(scope="module") def mllama_model_config(): return ModelConfig( MLLAMA_MODEL_ID, runner="generate", limit_mm_per_prompt={ "image": 2, }, ) @pytest.fixture(scope="module") def mllama_tokenizer(): return TokenizerGroup( MLLAMA_MODEL_ID, enable_lora=False, max_num_seqs=5, max_input_length=None, ) @pytest.fixture(scope="function") def mistral_model_config(): return ModelConfig( MISTRAL_MODEL_ID, runner="generate", limit_mm_per_prompt={ "image": 2, }, ) @pytest.fixture(scope="module") def mistral_tokenizer(): return TokenizerGroup( tokenizer_id=MISTRAL_MODEL_ID, enable_lora=False, max_num_seqs=5, max_input_length=None, ) @pytest.fixture(scope="module") def image_url(): image = ImageAsset("cherry_blossom") base64 = encode_image_base64(image.pil_image) return f"data:image/jpeg;base64,{base64}" @pytest.fixture(scope="module") def video_url(): video = VideoAsset("baby_reading", 1) base64 = encode_video_base64(video.np_ndarrays) return f"data:video/jpeg;base64,{base64}" @pytest.fixture(scope="module") def audio_url(): audio = AudioAsset("mary_had_lamb") base64 = encode_audio_base64(*audio.audio_and_sample_rate) return f"data:audio/ogg;base64,{base64}" def _assert_mm_data_is_image_input( mm_data: Optional[MultiModalDataDict], image_count: int, ) -> None: assert mm_data is not None assert set(mm_data.keys()) == {"image"} image_data = mm_data.get("image") assert image_data is not None assert isinstance(image_data, list) and len(image_data) == image_count def _assert_mm_uuids( mm_uuids: Optional[MultiModalUUIDDict], media_count: int, expected_uuids: list[Optional[str]], modality: str = "image", ) -> None: if len(expected_uuids) > 0: assert mm_uuids is not None assert modality in mm_uuids image_uuids = mm_uuids.get(modality) assert image_uuids is not None assert isinstance(image_uuids, list) and len(image_uuids) == media_count assert image_uuids == expected_uuids else: assert mm_uuids is None ModalityType = Literal["image", "video", "audio"] MultiModalDataCounts = Mapping[ModalityType, int] def _assert_mm_data_inputs( mm_data: Optional[MultiModalDataDict], data_count: MultiModalDataCounts, ) -> None: assert mm_data is not None assert set(data_count.keys()) == (set(mm_data.keys())) for modality, n in data_count.items(): modality_data = mm_data.get(modality) assert modality_data is not None assert isinstance(modality_data, list) and len(modality_data) == n def test_parse_chat_messages_single_image( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "What's in the image?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\nWhat's in the image?" }] _assert_mm_data_is_image_input(mm_data, 1) _assert_mm_uuids(mm_uuids, 1, expected_uuids=[None]) def test_parse_chat_messages_single_image_with_uuid( phi3v_model_config, phi3v_tokenizer, image_url, ): image_uuid = str(hash(image_url)) conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url, }, "uuid": image_uuid, }, { "type": "text", "text": "What's in the image?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\nWhat's in the image?" }] _assert_mm_data_is_image_input(mm_data, 1) _assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid]) def test_parse_chat_messages_single_image_with_bad_uuid_format( phi3v_model_config, phi3v_tokenizer, image_url, ): image_uuid = str(hash(image_url)) conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url, "uuid": image_uuid, }, "bad_uuid_key": image_uuid, }, { "type": "text", "text": "What's in the image?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\nWhat's in the image?" }] _assert_mm_data_is_image_input(mm_data, 1) _assert_mm_uuids(mm_uuids, 1, expected_uuids=[None]) def test_parse_chat_messages_multiple_images_with_uuids( phi3v_model_config, phi3v_tokenizer, image_url, ): image_uuid1 = "my_uuid_1" image_uuid2 = "my_uuid_2" conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url, }, "uuid": image_uuid1, }, { "type": "image_url", "image_url": { "url": image_url, }, "uuid": image_uuid2, }, { "type": "text", "text": "What's in the image?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\n<|image_2|>\nWhat's in the image?", }] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2]) @pytest.mark.asyncio async def test_parse_chat_messages_single_image_with_uuid_async( phi3v_model_config, phi3v_tokenizer, image_url, ): image_uuid = str(hash(image_url)) conversation, mm_future, mm_uuids = parse_chat_messages_futures( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid, }, { "type": "text", "text": "What's in the image?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\nWhat's in the image?" }] _assert_mm_data_is_image_input(await mm_future, 1) _assert_mm_uuids(mm_uuids, 1, expected_uuids=[image_uuid]) @pytest.mark.asyncio async def test_parse_chat_messages_multiple_images_with_uuids_async( phi3v_model_config, phi3v_tokenizer, image_url, ): image_uuid1 = "my_uuid_1" image_uuid2 = "my_uuid_2" conversation, mm_future, mm_uuids = parse_chat_messages_futures( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid1, }, { "type": "image_pil", "image_pil": ImageAsset("cherry_blossom").pil_image, "uuid": image_uuid2, }, { "type": "text", "text": "What's in these images?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\n<|image_2|>\nWhat's in these images?", }] _assert_mm_data_is_image_input(await mm_future, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid1, image_uuid2]) @pytest.mark.asyncio async def test_parse_chat_messages_multiple_images_with_partial_uuids_async( phi3v_model_config, phi3v_tokenizer, image_url, ): image_uuid2 = "my_uuid_2" conversation, mm_future, mm_uuids = parse_chat_messages_futures( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, }, { "type": "image_pil", "image_pil": ImageAsset("cherry_blossom").pil_image, "uuid": image_uuid2, }, { "type": "text", "text": "What's in these images?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\n<|image_2|>\nWhat's in these images?", }] _assert_mm_data_is_image_input(await mm_future, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, image_uuid2]) def test_parse_chat_messages_empty_system( mistral_model_config, mistral_tokenizer, ): # Test string format conversation, _, _ = parse_chat_messages( [ { "role": "system", "content": "" }, { "role": "user", "content": [{ "type": "text", "text": "Who are you?" }], }, ], mistral_model_config, mistral_tokenizer, content_format="string", ) assert conversation == [ { "role": "system", "content": "" }, { "role": "user", "content": "Who are you?" }, ] # Test openai format conversation, _, _ = parse_chat_messages( [ { "role": "system", "content": "" }, { "role": "user", "content": [{ "type": "text", "text": "Who are you?" }], }, ], mistral_model_config, mistral_tokenizer, content_format="openai", ) assert conversation == [ { "role": "system", "content": [{ "type": "text", "text": "" }] }, { "role": "user", "content": [{ "type": "text", "text": "Who are you?" }] }, ] @pytest.mark.asyncio async def test_parse_chat_messages_single_image_async( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_future, mm_uuids = parse_chat_messages_futures( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "What's in the image?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\nWhat's in the image?" }] _assert_mm_data_is_image_input(await mm_future, 1) _assert_mm_uuids(mm_uuids, 1, expected_uuids=[None]) def test_parse_chat_messages_multiple_images( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "image_pil", "image_pil": ImageAsset("cherry_blossom").pil_image, }, { "type": "text", "text": "What's in these images?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\n<|image_2|>\nWhat's in these images?", }] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) @pytest.mark.asyncio async def test_parse_chat_messages_multiple_images_async( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_future, mm_uuids = parse_chat_messages_futures( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "image_pil", "image_pil": ImageAsset("cherry_blossom").pil_image, }, { "type": "text", "text": "What's in these images?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\n<|image_2|>\nWhat's in these images?", }] _assert_mm_data_is_image_input(await mm_future, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) def test_parse_chat_messages_placeholder_already_in_prompt( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "What's in <|image_1|> and how does it compare to <|image_2|>?", # noqa: E501 }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "What's in <|image_1|> and how does it compare to <|image_2|>?", }] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) def test_parse_chat_messages_placeholder_one_already_in_prompt( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "What's in <|image_1|> and how does it compare to the other one?", # noqa: E501 }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_2|>\nWhat's in <|image_1|> and how does it compare to the " "other one?", }] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) def test_parse_chat_messages_multiple_images_across_messages( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "What's in this image?" }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "What about this one?" }, ], }, ], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [ { "role": "user", "content": "<|image_1|>\nWhat's in this image?" }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "<|image_2|>\nWhat about this one?" }, ] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) def test_parse_chat_messages_multiple_images_with_uuids_across_messages( phi3v_model_config, phi3v_tokenizer, image_url, ): image_uuid = str(hash(image_url)) conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid, }, { "type": "text", "text": "What's in this image?" }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid, }, { "type": "text", "text": "What about this one?" }, ], }, ], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [ { "role": "user", "content": "<|image_1|>\nWhat's in this image?" }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "<|image_2|>\nWhat about this one?" }, ] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid]) def test_parse_chat_messages_context_text_format( phi3v_model_config, phi3v_tokenizer, ): conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [{ "type": "text", "text": "What's in this text?" }], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "What about this one?" }, ], phi3v_model_config, phi3v_tokenizer, content_format="openai", ) assert conversation == [ { "role": "user", "content": [{ "type": "text", "text": "What's in this text?" }], }, { "role": "assistant", "content": [{ "type": "text", "text": "Some stuff." }], }, { "role": "user", "content": [{ "type": "text", "text": "What about this one?" }], }, ] assert mm_data is None assert mm_uuids is None def test_parse_chat_messages_rejects_too_many_images_in_one_message( phi3v_model_config, phi3v_tokenizer, image_url, ): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="coroutine 'async_get_and_parse_image' was never awaited", ) with pytest.raises(ValueError, match="At most"): parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, }, { "type": "image_url", "image_url": { "url": image_url }, }, { "type": "image_url", "image_url": { "url": image_url }, }, { "type": "text", "text": "What's in these images?" }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) def test_parse_chat_messages_rejects_too_many_images_across_messages( phi3v_model_config, phi3v_tokenizer, image_url, ): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="coroutine 'async_get_and_parse_image' was never awaited", ) with pytest.raises(ValueError, match="At most"): parse_chat_messages( [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, }, { "type": "text", "text": "What's in this image?" }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url }, }, { "type": "image_url", "image_url": { "url": image_url }, }, { "type": "text", "text": "What about these two?" }, ], }, ], phi3v_model_config, phi3v_tokenizer, content_format="string", ) def test_parse_chat_messages_multiple_images_uncommon_input( phi3v_model_config, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ "What's in these images?", { "image_url": image_url }, { "image_url": image_url }, ], }], phi3v_model_config, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "<|image_1|>\n<|image_2|>\nWhat's in these images?", }] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) def test_parse_chat_messages_multiple_images_interleave( phi3v_model_config_mm_interleaved, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "text", "text": "I need you to compare this image", }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "and this one" }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "Do they have differences?" }, ], }], phi3v_model_config_mm_interleaved, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501 "Do they have differences?", }] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) @pytest.mark.asyncio async def test_parse_chat_messages_multiple_images_interleave_async( phi3v_model_config_mm_interleaved, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages_futures( [{ "role": "user", "content": [ { "type": "text", "text": "I need you to compare this image", }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "and this one" }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "Do they have differences?" }, ], }], phi3v_model_config_mm_interleaved, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501 "Do they have differences?", }] _assert_mm_data_is_image_input(await mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) @pytest.mark.asyncio async def test_parse_chat_messages_multiple_images_with_uuids_interleave_async( phi3v_model_config_mm_interleaved, phi3v_tokenizer, image_url, ): image_uuid = str(hash(image_url)) conversation, mm_data, mm_uuids = parse_chat_messages_futures( [{ "role": "user", "content": [ { "type": "text", "text": "I need you to compare this image", }, { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid, }, { "type": "text", "text": "and this one" }, { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid, }, { "type": "text", "text": "Do they have differences?" }, ], }], phi3v_model_config_mm_interleaved, phi3v_tokenizer, content_format="string", ) assert conversation == [{ "role": "user", "content": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501 "Do they have differences?", }] _assert_mm_data_is_image_input(await mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid]) def test_parse_chat_messages_multiple_images_multiple_messages_interleave( phi3v_model_config_mm_interleaved, phi3v_tokenizer, image_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "Be accurate." }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url } }, ], }, ], phi3v_model_config_mm_interleaved, phi3v_tokenizer, content_format="string", ) assert conversation == [ { "role": "user", "content": "What's on this image?\n<|image_1|>\nBe accurate.", }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "What's on this image?\n<|image_2|>" }, ] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) def test_parse_chat_messages_multiple_images_with_uuids_multiple_messages_interleave( # noqa: E501 phi3v_model_config_mm_interleaved, phi3v_tokenizer, image_url, ): image_uuid = str(hash(image_url)) conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid, }, { "type": "text", "text": "Be accurate." }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url }, "uuid": image_uuid, }, ], }, ], phi3v_model_config_mm_interleaved, phi3v_tokenizer, content_format="string", ) assert conversation == [ { "role": "user", "content": "What's on this image?\n<|image_1|>\nBe accurate.", }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "What's on this image?\n<|image_2|>" }, ] _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[image_uuid, image_uuid]) def test_parse_chat_messages_multiple_modals_multiple_messages_interleave( qwen25omni_model_config_mm_interleaved, qwen25omni_tokenizer, image_url, video_url, audio_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "Now listen to this audio" }, { "type": "audio_url", "audio_url": { "url": audio_url } }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "And what's in the video?" }, { "type": "video_url", "video_url": { "url": video_url } }, ], }, ], qwen25omni_model_config_mm_interleaved, qwen25omni_tokenizer, content_format="string", ) assert conversation == [ { "role": "user", "content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n" "Now listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>", # noqa: E501 }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n" "And what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>", }, ] _assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1}) _assert_mm_uuids(mm_uuids, 2, modality="image", expected_uuids=[None, None]) _assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=[None]) _assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[None]) def test_parse_chat_messages_multiple_modals_with_uuids_multiple_messages_interleave( # noqa: E501 qwen25omni_model_config_mm_interleaved, qwen25omni_tokenizer, image_url, video_url, audio_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url }, "uuid": "image_123", }, { "type": "text", "text": "Now listen to this audio" }, { "type": "audio_url", "audio_url": { "url": audio_url }, "uuid": "audio_123", }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url }, "uuid": "image_123", }, { "type": "text", "text": "And what's in the video?" }, { "type": "video_url", "video_url": { "url": video_url }, "uuid": "video_123", }, ], }, ], qwen25omni_model_config_mm_interleaved, qwen25omni_tokenizer, content_format="string", ) assert conversation == [ { "role": "user", "content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n" "Now listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>", # noqa: E501 }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n" "And what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>", }, ] _assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1}) _assert_mm_uuids(mm_uuids, 2, modality="image", expected_uuids=["image_123", "image_123"]) _assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=["video_123"]) _assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=["audio_123"]) def test_parse_chat_messages_multiple_modals_with_partial_uuids_multiple_messages_interleave( # noqa: E501 qwen25omni_model_config_mm_interleaved, qwen25omni_tokenizer, image_url, video_url, audio_url, ): conversation, mm_data, mm_uuids = parse_chat_messages( [ { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url }, "uuid": "image_123", }, { "type": "text", "text": "Now listen to this audio" }, { "type": "audio_url", "audio_url": { "url": audio_url } }, ], }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": [ { "type": "text", "text": "What's on this image?" }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "And what's in the video?" }, { "type": "video_url", "video_url": { "url": video_url }, "uuid": "video_123", }, ], }, ], qwen25omni_model_config_mm_interleaved, qwen25omni_tokenizer, content_format="string", ) assert conversation == [ { "role": "user", "content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n" "Now listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>", # noqa: E501 }, { "role": "assistant", "content": "Some stuff." }, { "role": "user", "content": "What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n" "And what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>", }, ] _assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1}) _assert_mm_uuids(mm_uuids, 2, modality="image", expected_uuids=["image_123", None]) _assert_mm_uuids(mm_uuids, 1, modality="video", expected_uuids=["video_123"]) _assert_mm_uuids(mm_uuids, 1, modality="audio", expected_uuids=[None]) def test_parse_chat_messages_multiple_images_interleave_with_placeholders( phi3v_model_config_mm_interleaved, phi3v_tokenizer, image_url, ): with pytest.raises( ValueError, match=r"Found more '<|image_1|>' placeholders in input prompt " "than actual multimodal data items.", ): parse_chat_messages( [{ "role": "user", "content": [ { "type": "image_url", "image_url": { "url": image_url } }, { "type": "image_url", "image_url": { "url": image_url } }, { "type": "text", "text": "I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501 "Do they have differences?", }, ], }], phi3v_model_config_mm_interleaved, phi3v_tokenizer, content_format="string", ) ### Mllama currently wraps images / texts as interleaved dictionaries def test_mllama_single_image( mllama_model_config, mllama_tokenizer, image_url, ): """Ensures that a single image is parsed correctly mllama.""" conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "text", "text": "The content of this image is:" }, { "image_url": image_url }, ], }], mllama_model_config, mllama_tokenizer, content_format="openai", ) _assert_mm_data_is_image_input(mm_data, 1) _assert_mm_uuids(mm_uuids, 1, expected_uuids=[None]) assert conversation == [{ "role": "user", "content": [ { "type": "text", "text": "The content of this image is:" }, { "type": "image" }, ], }] def test_mllama_interleaved_images( mllama_model_config, mllama_tokenizer, image_url, ): """Ensures that multiple image are parsed as interleaved dicts.""" conversation, mm_data, mm_uuids = parse_chat_messages( [{ "role": "user", "content": [ { "type": "text", "text": "The content of the first image is:", }, { "image_url": image_url }, { "type": "text", "text": "The content of the second image is:", }, { "image_url": image_url }, ], }], mllama_model_config, mllama_tokenizer, content_format="openai", ) _assert_mm_data_is_image_input(mm_data, 2) _assert_mm_uuids(mm_uuids, 2, expected_uuids=[None, None]) assert conversation == [{ "role": "user", "content": [ { "type": "text", "text": "The content of the first image is:" }, { "type": "image" }, { "type": "text", "text": "The content of the second image is:" }, { "type": "image" }, ], }] @pytest.mark.parametrize("model", [MLLAMA_MODEL_ID]) def test_multimodal_image_parsing_matches_hf(model, image_url): """Checks end to end hf alignment for multimodal [image] parsing.""" def get_conversation(is_hf: bool): img_part = {"type": "image_url", "image_url": {"url": image_url}} if is_hf: img_part = {"type": "image"} return [{ "role": "user", "content": [ { "type": "text", "text": "The content of the first image is:", }, img_part, { "type": "text", "text": "The content of the second image is:", }, img_part, { "type": "text", "text": "What animal is in the first image?", }, ], }] # Build a config for the model model_config = ModelConfig( model, runner="generate", limit_mm_per_prompt={ "image": 2, }, ) # Build the tokenizer group and grab the underlying tokenizer tokenizer_group = TokenizerGroup( model, enable_lora=False, max_num_seqs=5, max_input_length=None, trust_remote_code=model_config.trust_remote_code, ) tokenizer = tokenizer_group.tokenizer # Build and parse a conversation with {"type": "image"} using the tokenizer hf_conversation = get_conversation(is_hf=True) hf_result = tokenizer.apply_chat_template( hf_conversation, tokenize=False, add_generation_prompt=True, ) # Now parse with vLLMs chat utils & apply the template vllm_conversation = get_conversation(is_hf=False) conversation, _, _ = parse_chat_messages( vllm_conversation, model_config, tokenizer_group, content_format="openai", ) vllm_result = apply_hf_chat_template( tokenizer=tokenizer, conversation=conversation, chat_template=None, model_config=model_config, tools=None, add_generation_prompt=True, ) assert hf_result == vllm_result @pytest.mark.parametrize( "model", [ QWEN2VL_MODEL_ID, # tokenizer.chat_template is of type str HERMES_MODEL_ID, # tokenizer.chat_template is of type dict ], ) @pytest.mark.parametrize("use_tools", [True, False]) def test_resolve_hf_chat_template(sample_json_schema, model, use_tools): """checks that chat_template is a dict type for HF models.""" model_info = HF_EXAMPLE_MODELS.find_hf_info(model) model_info.check_available_online(on_fail="skip") model_config = ModelConfig( model, tokenizer=model_info.tokenizer or model, tokenizer_mode=model_info.tokenizer_mode, revision=model_info.revision, trust_remote_code=model_info.trust_remote_code, hf_overrides=model_info.hf_overrides, skip_tokenizer_init=model_info.skip_tokenizer_init, enforce_eager=model_info.enforce_eager, dtype=model_info.dtype) # Build the tokenizer group and grab the underlying tokenizer tokenizer_group = TokenizerGroup( model, enable_lora=False, max_num_seqs=5, max_input_length=None, trust_remote_code=model_config.trust_remote_code, ) tokenizer = tokenizer_group.tokenizer tools = ([{ "type": "function", "function": { "name": "dummy_function_name", "description": "This is a dummy function", "parameters": sample_json_schema, }, }] if use_tools else None) # Test detecting the tokenizer's chat_template chat_template = resolve_hf_chat_template( tokenizer, chat_template=None, tools=tools, model_config=model_config, ) assert isinstance(chat_template, str) # NOTE: Qwen2-Audio default chat template is specially defined inside # processor class instead of using `tokenizer_config.json` # yapf: disable @pytest.mark.parametrize( ("model", "expected_format"), [(PHI3V_MODEL_ID, "string"), (QWEN2VL_MODEL_ID, "openai"), (QWEN25VL_MODEL_ID, "openai"), (ULTRAVOX_MODEL_ID, "string"), (QWEN2AUDIO_MODEL_ID, "openai"), (MLLAMA_MODEL_ID, "openai"), (LLAMA_GUARD_MODEL_ID, "openai")], ) # yapf: enable def test_resolve_content_format_hf_defined(model, expected_format): model_info = HF_EXAMPLE_MODELS.find_hf_info(model) model_info.check_available_online(on_fail="skip") model_config = ModelConfig( model, tokenizer=model_info.tokenizer or model, tokenizer_mode=model_info.tokenizer_mode, revision=model_info.revision, trust_remote_code=model_info.trust_remote_code, hf_overrides=model_info.hf_overrides, skip_tokenizer_init=model_info.skip_tokenizer_init, enforce_eager=model_info.enforce_eager, dtype=model_info.dtype) tokenizer_group = TokenizerGroup( model, enable_lora=False, max_num_seqs=5, max_input_length=None, trust_remote_code=model_config.trust_remote_code, ) tokenizer = tokenizer_group.tokenizer # Test detecting the tokenizer's chat_template chat_template = resolve_hf_chat_template( tokenizer, chat_template=None, tools=None, model_config=model_config, ) assert isinstance(chat_template, str) print("[TEXT]") print(chat_template) print("[AST]") print(_try_extract_ast(chat_template)) resolved_format = resolve_chat_template_content_format( None, # Test detecting the tokenizer's chat_template None, "auto", tokenizer, model_config=model_config, ) assert resolved_format == expected_format # yapf: disable @pytest.mark.parametrize( ("model", "expected_format"), [("Salesforce/blip2-opt-2.7b", "string"), ("facebook/chameleon-7b", "string"), ("deepseek-ai/deepseek-vl2-tiny", "string"), ("microsoft/Florence-2-base", "string"), ("adept/fuyu-8b", "string"), ("google/paligemma-3b-mix-224", "string"), ("Qwen/Qwen-VL", "string"), ("Qwen/Qwen-VL-Chat", "string")], ) # yapf: enable def test_resolve_content_format_fallbacks(model, expected_format): model_info = HF_EXAMPLE_MODELS.find_hf_info(model) model_info.check_available_online(on_fail="skip") model_config = ModelConfig( model, tokenizer=model_info.tokenizer or model, tokenizer_mode=model_info.tokenizer_mode, revision=model_info.revision, trust_remote_code=model_info.trust_remote_code, hf_overrides=model_info.hf_overrides, skip_tokenizer_init=model_info.skip_tokenizer_init, enforce_eager=model_info.enforce_eager, dtype=model_info.dtype) tokenizer_group = TokenizerGroup( model_config.tokenizer, enable_lora=False, max_num_seqs=5, max_input_length=None, trust_remote_code=model_config.trust_remote_code, ) tokenizer = tokenizer_group.tokenizer # Test detecting the tokenizer's chat_template chat_template = resolve_hf_chat_template( tokenizer, chat_template=None, tools=None, model_config=model_config, ) assert isinstance(chat_template, str) print("[TEXT]") print(chat_template) print("[AST]") print(_try_extract_ast(chat_template)) resolved_format = resolve_chat_template_content_format( None, # Test detecting the tokenizer's chat_template None, "auto", tokenizer, model_config=model_config, ) assert resolved_format == expected_format # yapf: disable @pytest.mark.parametrize( ("template_path", "expected_format"), [("template_alpaca.jinja", "string"), ("template_baichuan.jinja", "string"), ("template_chatglm.jinja", "string"), ("template_chatglm2.jinja", "string"), ("template_chatml.jinja", "string"), ("template_dse_qwen2_vl.jinja", "openai"), ("template_falcon_180b.jinja", "string"), ("template_falcon.jinja", "string"), ("template_inkbot.jinja", "string"), ("template_teleflm.jinja", "string"), ("template_vlm2vec.jinja", "openai"), ("tool_chat_template_granite_20b_fc.jinja", "string"), ("tool_chat_template_hermes.jinja", "string"), ("tool_chat_template_internlm2_tool.jinja", "string"), ("tool_chat_template_llama3.1_json.jinja", "openai"), ("tool_chat_template_llama3.2_json.jinja", "openai"), ("tool_chat_template_mistral_parallel.jinja", "string"), ("tool_chat_template_mistral.jinja", "string")], ) # yapf: enable def test_resolve_content_format_examples(template_path, expected_format): model_config = ModelConfig( PHI3V_MODEL_ID, # Dummy tokenizer=PHI3V_MODEL_ID, # Dummy trust_remote_code=True, ) tokenizer_group = TokenizerGroup( PHI3V_MODEL_ID, # Dummy enable_lora=False, max_num_seqs=5, max_input_length=None, trust_remote_code=model_config.trust_remote_code, ) dummy_tokenizer = tokenizer_group.tokenizer dummy_tokenizer.chat_template = None chat_template = load_chat_template(EXAMPLES_DIR / template_path) assert isinstance(chat_template, str) print("[TEXT]") print(chat_template) print("[AST]") print(_try_extract_ast(chat_template)) resolved_format = resolve_chat_template_content_format( chat_template, None, "auto", dummy_tokenizer, model_config=model_config, ) assert resolved_format == expected_format def test_parse_chat_messages_include_thinking_chunk(mistral_model_config, mistral_tokenizer): messages = [{ "role": "system", "content": [{ "type": "text", "text": "You are a helpful assistant." }, { "type": "thinking", "closed": True, "thinking": "Only return the answer when you are confident." }] }, { "role": "user", "content": "What is 2+2?" }, { "role": "assistant", "content": [{ "type": "text", "text": "Let me think about it." }, { "type": "thinking", "closed": True, "thinking": "2+2 = 4" }, { "type": "text", "text": "The answer is 4.", }], }] conversation_with_thinking, _, _ = parse_chat_messages( messages, mistral_model_config, mistral_tokenizer, content_format="openai", ) expected_conversation = [{ "role": "system", "content": [{ "type": "text", "text": "You are a helpful assistant." }, { "type": "text", "text": "Only return the answer when you are confident." }], }, { "role": "user", "content": [{ "type": "text", "text": "What is 2+2?" }], }, { "role": "assistant", "content": [ { "type": "text", "text": "Let me think about it." }, { "type": "text", "text": "2+2 = 4" }, { "type": "text", "text": "The answer is 4." }, ] }] assert conversation_with_thinking == expected_conversation def test_apply_mistral_chat_template_thinking_chunk(): # Moved import here to avoid yapf and isort conflicts from vllm.entrypoints.chat_utils import apply_mistral_chat_template messages = [{ "role": "system", "content": [{ "type": "text", "text": "You are a helpful assistant." }, { "type": "thinking", "closed": True, "thinking": "Only return the answer when you are confident." }] }, { "role": "user", "content": "What is 2+2?" }, { "role": "assistant", "content": [{ "type": "text", "text": "Let me think about it." }, { "type": "thinking", "closed": True, "thinking": "2+2 = 4" }, { "type": "text", "text": "The answer is 4.", }], }, { "role": "user", "content": "Thanks, what is 3+3?" }] # TODO(Julien): upon model release change to a tokenizer already configured. # ================================================================= mistral_tokenizer = MistralTokenizer.from_pretrained( "mistralai/Devstral-Small-2507") assert isinstance(mistral_tokenizer.tokenizer, Tekkenizer) # Add think special tokens to the tokenizer mistral_tokenizer.tokenizer._all_special_tokens[35] = SpecialTokenInfo( rank=35, is_control=True, token_str=SpecialTokens.begin_think.value) mistral_tokenizer.tokenizer._all_special_tokens[36] = SpecialTokenInfo( rank=36, is_control=True, token_str=SpecialTokens.end_think.value) mistral_tokenizer.tokenizer._special_tokens_reverse_vocab = { k: v for k, v in mistral_tokenizer.tokenizer._special_tokens_reverse_vocab.items() if v not in {35, 36} } mistral_tokenizer.tokenizer._special_tokens_reverse_vocab[ SpecialTokens.begin_think.value] = 35 mistral_tokenizer.tokenizer._special_tokens_reverse_vocab[ SpecialTokens.end_think.value] = 36 mistral_tokenizer.instruct.BEGIN_THINK = 35 mistral_tokenizer.instruct.END_THINK = 36 # ================================================================= tokens_ids = apply_mistral_chat_template(mistral_tokenizer, messages, chat_template=None, tools=None) string_tokens = mistral_tokenizer.mistral.decode( tokens_ids, special_token_policy=SpecialTokenPolicy.KEEP) expected_tokens = ( r"[SYSTEM_PROMPT]You are a helpful assistant.[THINK]Only return the" r" answer when you are confident.[/THINK][/SYSTEM_PROMPT]" r"[INST]What is 2+2?[/INST]" r"Let me think about it.[THINK]2+2 = 4[/THINK]The answer is 4." r"[INST]Thanks, what is 3+3?[/INST]") assert string_tokens == expected_tokens