# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project """ Tests compute_expert_num_tokens kernels """ import dataclasses from typing import Optional import pytest import torch from vllm.model_executor.layers.fused_moe.utils import count_expert_num_tokens @dataclasses.dataclass class TestTensors: topk_ids: torch.Tensor expert_map: Optional[torch.Tensor] = None def to_device(self, device: str): self.topk_ids = self.topk_ids.to(device=device) if self.expert_map is not None: self.expert_map = self.expert_map.to(device=device) @staticmethod def make( num_tokens: int, num_topk: int, num_experts: int, device: str, topk_ids_dtype: torch.dtype, ) -> "TestTensors": # make topk ids topk_ids = torch.empty((num_tokens, num_topk), device=device, dtype=torch.int64) for x in range(num_tokens): topk_ids[x] = torch.randperm(num_experts)[:num_topk] topk_ids = topk_ids.to(dtype=torch.int64) return TestTensors(topk_ids=topk_ids) def with_ep_rank( self, ep_rank: int, num_global_experts: int, num_local_experts: int, device: str ): # make an expert map expert_map = torch.empty((num_global_experts), device=device, dtype=torch.int32) expert_map.fill_(-1) s = ep_rank * num_local_experts e = s + num_local_experts expert_map[s:e] = torch.tensor(list(range(num_local_experts)), device=device) return TestTensors(topk_ids=self.topk_ids.clone(), expert_map=expert_map) def ref_impl(tt: TestTensors, expert_num_tokens: torch.Tensor): # do the reference in cpu tt.to_device("cpu") expert_ids, counts = tt.topk_ids.unique(return_counts=True) for eid, count in zip(expert_ids, counts): if eid != -1 and tt.expert_map is not None: eid = tt.expert_map[eid] if eid == -1: continue expert_num_tokens[eid] += count def do_test_compute_expert_num_tokens( num_tokens: int, num_topk: int, num_experts: int, ep_size: int, topk_ids_dtype: torch.dtype, ): assert num_topk <= num_experts tt = TestTensors.make( num_tokens, num_topk, num_experts, topk_ids_dtype=topk_ids_dtype, device="cpu" ) num_global_experts = num_experts assert num_global_experts % ep_size == 0 num_local_experts = num_global_experts // ep_size for ep_rank in range(ep_size): tt_rank = tt.with_ep_rank(ep_rank, num_global_experts, num_local_experts, "cpu") ref_expert_num_tokens = torch.zeros( (num_local_experts), device="cpu", dtype=torch.int32 ) ref_impl(tt_rank, ref_expert_num_tokens) ref_expert_num_tokens = ref_expert_num_tokens.to("cuda") tt_rank.to_device("cuda") # Test with expert_map triton_expert_num_tokens_w_emap = count_expert_num_tokens( tt_rank.topk_ids, num_local_experts, tt_rank.expert_map ) # Test without expert map topk_ids = tt_rank.expert_map[tt_rank.topk_ids].to(topk_ids_dtype) triton_expert_num_tokens_wo_emap = count_expert_num_tokens( topk_ids, num_local_experts, expert_map=None ) torch.testing.assert_close( ref_expert_num_tokens, triton_expert_num_tokens_w_emap, atol=0, rtol=0 ) torch.testing.assert_close( ref_expert_num_tokens, triton_expert_num_tokens_wo_emap, atol=0, rtol=0 ) @pytest.mark.parametrize("num_tokens", [1, 4, 8, 11, 127, 128, 3333, 7317]) @pytest.mark.parametrize("num_topk", [2, 6, 8]) @pytest.mark.parametrize("num_experts", [64]) @pytest.mark.parametrize("ep_size", [1, 2, 4]) @pytest.mark.parametrize("topk_ids_dtype", [torch.int64]) def test_compute_expert_num_tokens( num_tokens: int, num_topk: int, num_experts: int, ep_size: int, topk_ids_dtype: torch.dtype, ): do_test_compute_expert_num_tokens( num_tokens, num_topk, num_experts, ep_size, topk_ids_dtype ) @pytest.mark.parametrize("numel", list(range(1, 8192, 111))) @pytest.mark.parametrize("num_experts", [32]) @pytest.mark.parametrize("ep_size", [2]) @pytest.mark.parametrize("topk_ids_dtype", [torch.int64]) def test_compute_expert_num_tokens_from_numel( numel: int, num_experts: int, ep_size: int, topk_ids_dtype: torch.dtype ): do_test_compute_expert_num_tokens( num_tokens=numel, num_topk=1, num_experts=num_experts, ep_size=ep_size, topk_ids_dtype=topk_ids_dtype, )