# SPDX-License-Identifier: Apache-2.0 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The vLLM team. # Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only DeepseekV2/DeepseekV3 model.""" from typing import Any, Dict, Iterable, Optional, Set, Tuple, Union import torch from torch import nn from transformers import PretrainedConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, ModelConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (ColumnParallelLinear, MergedColumnParallelLinear, ReplicatedLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors from .interfaces import SupportsPP from .utils import (PPMissingLayer, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) class DeepseekV2MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, reduce_results: bool = True, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj") self.down_proj = RowParallelLinear(intermediate_size, hidden_size, bias=False, quant_config=quant_config, reduce_results=reduce_results, prefix=f"{prefix}.down_proj") if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class DeepseekV2MoE(nn.Module): def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.tp_size = get_tensor_model_parallel_world_size() self.routed_scaling_factor = config.routed_scaling_factor self.n_shared_experts = config.n_shared_experts if config.hidden_act != "silu": raise ValueError(f"Unsupported activation: {config.hidden_act}. " "Only silu is supported for now.") self.gate = ReplicatedLinear(config.hidden_size, config.n_routed_experts, bias=False, quant_config=None, prefix=f"{prefix}.gate") if config.topk_method == "noaux_tc": self.gate.e_score_correction_bias = nn.Parameter( torch.empty(config.n_routed_experts)) else: self.gate.e_score_correction_bias = None self.experts = FusedMoE( num_experts=config.n_routed_experts, top_k=config.num_experts_per_tok, hidden_size=config.hidden_size, intermediate_size=config.moe_intermediate_size, reduce_results=False, renormalize=config.norm_topk_prob, quant_config=quant_config, use_grouped_topk=True, num_expert_group=config.n_group, topk_group=config.topk_group, prefix=f"{prefix}.experts", scoring_func=config.scoring_func, e_score_correction_bias=self.gate.e_score_correction_bias) if config.n_shared_experts is not None: intermediate_size = (config.moe_intermediate_size * config.n_shared_experts) self.shared_experts = DeepseekV2MLP( hidden_size=config.hidden_size, intermediate_size=intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, reduce_results=self.experts.must_reduce_shared_expert_outputs( ), prefix=f"{prefix}.shared_experts", ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) if self.n_shared_experts is not None: shared_output = self.shared_experts(hidden_states) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) if hidden_states.dtype != torch.float16: final_hidden_states = self.experts( hidden_states=hidden_states, router_logits=router_logits) * self.routed_scaling_factor else: # Fix FP16 overflow # See DeepseekV2DecoderLayer for more details. final_hidden_states = self.experts(hidden_states=hidden_states, router_logits=router_logits) if shared_output is not None: if hidden_states.dtype != torch.float16: final_hidden_states = final_hidden_states + shared_output else: # Fix FP16 overflow # See DeepseekV2DecoderLayer for more details. final_hidden_states = final_hidden_states + shared_output \ * (1. / self.routed_scaling_factor) if self.tp_size > 1: final_hidden_states = ( self.experts.maybe_all_reduce_tensor_model_parallel( final_hidden_states)) return final_hidden_states.view(num_tokens, hidden_dim) def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float: import math if scale <= 1: return 1.0 return 0.1 * mscale * math.log(scale) + 1.0 class DeepseekV2Attention(nn.Module): def __init__( self, config: PretrainedConfig, hidden_size: int, num_heads: int, qk_nope_head_dim: int, qk_rope_head_dim: int, v_head_dim: int, q_lora_rank: int, kv_lora_rank: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, max_position_embeddings: int = 8192, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size self.qk_nope_head_dim = qk_nope_head_dim self.qk_rope_head_dim = qk_rope_head_dim self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim self.v_head_dim = v_head_dim self.q_lora_rank = q_lora_rank self.kv_lora_rank = kv_lora_rank self.num_heads = num_heads tp_size = get_tensor_model_parallel_world_size() assert num_heads % tp_size == 0 self.num_local_heads = num_heads // tp_size self.scaling = self.qk_head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings if self.q_lora_rank is not None: self.q_a_proj = ReplicatedLinear(self.hidden_size, self.q_lora_rank, bias=False, quant_config=quant_config, prefix=f"{prefix}.q_a_proj") self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps) self.q_b_proj = ColumnParallelLinear(q_lora_rank, self.num_heads * self.qk_head_dim, bias=False, quant_config=quant_config, prefix=f"{prefix}.q_b_proj") else: self.q_proj = ColumnParallelLinear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False, quant_config=quant_config, prefix=f"{prefix}.q_proj") self.kv_a_proj_with_mqa = ReplicatedLinear( self.hidden_size, self.kv_lora_rank + self.qk_rope_head_dim, bias=False, quant_config=quant_config, prefix=f"{prefix}.kv_a_proj_with_mqa") self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps) self.kv_b_proj = ColumnParallelLinear( self.kv_lora_rank, self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), bias=False, quant_config=quant_config, prefix=f"{prefix}.kv_b_proj") # O projection. self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim, self.hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj") if rope_scaling: rope_scaling["rope_type"] = 'deepseek_yarn' self.rotary_emb = get_rope(qk_rope_head_dim, rotary_dim=qk_rope_head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=False) if rope_scaling: mscale_all_dim = rope_scaling.get("mscale_all_dim", False) scaling_factor = rope_scaling["factor"] mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim)) self.scaling = self.scaling * mscale * mscale self.attn = Attention(self.num_local_heads, self.qk_head_dim, self.scaling, num_kv_heads=self.num_local_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: if self.q_lora_rank is not None: q = self.q_a_proj(hidden_states)[0] q = self.q_a_layernorm(q) q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim) else: q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads, self.qk_head_dim) q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0] kv_a, _ = latent_cache.split( [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) latent_cache = latent_cache.unsqueeze(1) kv_a = self.kv_a_layernorm(kv_a.contiguous()) kv = self.kv_b_proj(kv_a)[0] kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim) k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1) k_pe = latent_cache[:, :, self.kv_lora_rank:] q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe) q[..., self.qk_nope_head_dim:] = q_pe k = torch.empty_like(q) k[..., :self.qk_nope_head_dim] = k_nope k[..., self.qk_nope_head_dim:] = k_pe # padding value to qk_head_dim for alignment v = torch.nn.functional.pad( v, [0, self.qk_head_dim - self.v_head_dim], value=0).view(-1, self.num_local_heads * self.qk_head_dim) attn_output = self.attn(q, k, v) attn_output = attn_output.view( -1, self.num_local_heads, self.qk_head_dim)[..., :self.v_head_dim].reshape( -1, self.num_local_heads * self.v_head_dim) output, _ = self.o_proj(attn_output) return output class DeepseekV2MLAAttention(nn.Module): """ Main reference: DeepseekV2 paper, and FlashInfer Implementation (https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551). For more info see MLACommonImpl in: vllm/attention/backends/mla/utils.py """ def __init__( self, config: PretrainedConfig, hidden_size: int, num_heads: int, qk_nope_head_dim: int, qk_rope_head_dim: int, v_head_dim: int, q_lora_rank: Optional[int], kv_lora_rank: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, max_position_embeddings: int = 8192, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size self.qk_nope_head_dim = qk_nope_head_dim self.qk_rope_head_dim = qk_rope_head_dim self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim self.v_head_dim = v_head_dim self.q_lora_rank = q_lora_rank self.kv_lora_rank = kv_lora_rank self.num_heads = num_heads tp_size = get_tensor_model_parallel_world_size() assert num_heads % tp_size == 0 self.num_local_heads = num_heads // tp_size self.scaling = self.qk_head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings if self.q_lora_rank is not None: self.q_a_proj = ReplicatedLinear(self.hidden_size, self.q_lora_rank, bias=False, quant_config=quant_config, prefix=f"{prefix}.q_a_proj") self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps) self.q_b_proj = ColumnParallelLinear(q_lora_rank, self.num_heads * self.qk_head_dim, bias=False, quant_config=quant_config, prefix=f"{prefix}.q_b_proj") else: self.q_proj = ColumnParallelLinear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False, quant_config=quant_config, prefix=f"{prefix}.q_proj") self.kv_a_proj_with_mqa = ReplicatedLinear( self.hidden_size, self.kv_lora_rank + self.qk_rope_head_dim, bias=False, quant_config=quant_config, prefix=f"{prefix}.kv_a_proj_with_mqa") self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps) self.kv_b_proj = ColumnParallelLinear( self.kv_lora_rank, self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), bias=False, quant_config=quant_config, prefix=f"{prefix}.kv_b_proj") self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim, self.hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj") if rope_scaling: rope_scaling["rope_type"] = 'deepseek_yarn' self.rotary_emb = get_rope(qk_rope_head_dim, rotary_dim=qk_rope_head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=False) if rope_scaling: mscale_all_dim = rope_scaling.get("mscale_all_dim", False) scaling_factor = rope_scaling["factor"] mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim)) self.scaling = self.scaling * mscale * mscale # In the MLA backend, kv_cache includes both k_c and # pe (i.e. decoupled position embeddings). In particular, # the concat_and_cache_mla op requires # k_c.size(1) + k_pe.size(1) == kv_cache.size(2) # i.e. # kv_lora_rank + qk_rope_head_dim == head_size self.mla_attn = Attention( num_heads=self.num_local_heads, head_size=self.kv_lora_rank + self.qk_rope_head_dim, scale=self.scaling, num_kv_heads=1, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn", use_mla=True, # MLA Args q_lora_rank=self.q_lora_rank, kv_lora_rank=self.kv_lora_rank, qk_nope_head_dim=self.qk_nope_head_dim, qk_rope_head_dim=self.qk_rope_head_dim, qk_head_dim=self.qk_head_dim, v_head_dim=self.v_head_dim, kv_b_proj=self.kv_b_proj, ) self.prefix = prefix self.debug_layer_idx = int(self.prefix.split(".")[-2]) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: if self.q_lora_rank is not None: q_c = self.q_a_proj(hidden_states)[0] q_c = self.q_a_layernorm(q_c) q = self.q_b_proj(q_c)[0] else: q = self.q_proj(hidden_states)[0] kv_c, k_pe = self.kv_a_proj_with_mqa(hidden_states)[0].split( [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) kv_c_normed = self.kv_a_layernorm(kv_c.contiguous()) q = q.view(-1, self.num_local_heads, self.qk_head_dim) # Add head dim of 1 to k_pe k_pe = k_pe.unsqueeze(1) q[..., self.qk_nope_head_dim:], k_pe = self.rotary_emb( positions, q[..., self.qk_nope_head_dim:], k_pe) attn_out = self.mla_attn( q, kv_c_normed, k_pe, output_shape=(hidden_states.shape[0], self.num_local_heads * self.v_head_dim)) return self.o_proj(attn_out)[0] class DeepseekV2DecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, prefix: str, model_config: ModelConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) # DecoderLayers are created with `make_layers` which passes the prefix # with the layer's index. layer_idx = int(prefix.split(sep='.')[-1]) self.layer_idx = layer_idx if model_config.use_mla: attn_cls = DeepseekV2MLAAttention else: attn_cls = DeepseekV2Attention self.self_attn = attn_cls( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, qk_nope_head_dim=config.qk_nope_head_dim, qk_rope_head_dim=config.qk_rope_head_dim, v_head_dim=config.v_head_dim, q_lora_rank=config.q_lora_rank if hasattr(config, "q_lora_rank") else None, kv_lora_rank=config.kv_lora_rank, rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", ) if (config.n_routed_experts is not None and layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0): self.mlp = DeepseekV2MoE( config=config, quant_config=quant_config, prefix=f"{prefix}.mlp", ) else: self.mlp = DeepseekV2MLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.routed_scaling_factor = config.routed_scaling_factor def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, residual: Optional[torch.Tensor], ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) if hidden_states.dtype == torch.float16: # Fix FP16 overflow # We scale both hidden_states and residual before # rmsnorm, and rmsnorm result would not affect by scale. hidden_states *= 1. / self.routed_scaling_factor if self.layer_idx == 0: # The residual is shared by all layers, we only scale it on # first layer. residual *= 1. / self.routed_scaling_factor # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) if isinstance(self.mlp, DeepseekV2MLP) and hidden_states.dtype == torch.float16: # Fix FP16 overflow # Scaling the DeepseekV2MLP output, it is the input of # input_layernorm of next decoder layer. # The scaling of DeepseekV2MOE output would be done in the forward # of DeepseekV2MOE hidden_states *= 1. / self.routed_scaling_factor return hidden_states, residual @support_torch_compile class DeepseekV2Model(nn.Module): fall_back_to_pt_during_load = False def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config model_config = vllm_config.model_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.vocab_size = config.vocab_size if get_pp_group().is_first_rank: self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.embed_tokens") else: self.embed_tokens = PPMissingLayer() self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: DeepseekV2DecoderLayer( config, prefix, model_config=model_config, cache_config=cache_config, quant_config=quant_config, ), prefix=f"{prefix}.layers") if get_pp_group().is_last_rank: self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size)) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors], inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in self.layers[self.start_layer:self.end_layer]: hidden_states, residual = layer(positions, hidden_states, residual) if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, "residual": residual }) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class DeepseekV2ForCausalLM(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.model = DeepseekV2Model(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) if get_pp_group().is_last_rank: self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) else: self.lm_head = PPMissingLayer() self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def make_empty_intermediate_tensors( self, batch_size: int, dtype: torch.dtype, device: torch.device) -> IntermediateTensors: return IntermediateTensors({ "hidden_states": torch.zeros((batch_size, self.config.hidden_size), dtype=dtype, device=device), "residual": torch.zeros((batch_size, self.config.hidden_size), dtype=dtype, device=device), }) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] # Params for weights, fp8 weight scales, fp8 activation scales # (param_name, weight_name, expert_id, shard_id) expert_params_mapping = FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.n_routed_experts) params_dict = dict(self.named_parameters()) loaded_params: Set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue spec_layer = get_spec_layer_idx_from_weight_name(self.config, name) if spec_layer is not None: continue # skip spec decode layers for main model for (param_name, weight_name, shard_id) in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if (("mlp.experts." in name) and name not in params_dict): continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM): pass def get_spec_layer_idx_from_weight_name(config: PretrainedConfig, weight_name: str) -> Optional[int]: if hasattr(config, "num_nextn_predict_layers") and (config.num_nextn_predict_layers > 0): layer_idx = config.num_hidden_layers for i in range(config.num_nextn_predict_layers): if weight_name.startswith(f"model.layers.{layer_idx+i}."): return layer_idx + i return None