# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from importlib.util import find_spec import pytest import torch import vllm.envs as envs from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant from vllm.compilation.collective_fusion import AllReduceFusionPass from vllm.compilation.fix_functionalization import FixFunctionalizationPass from vllm.compilation.noop_elimination import NoOpEliminationPass from vllm.compilation.post_cleanup import PostCleanupPass from vllm.config import ( CompilationConfig, CompilationMode, DeviceConfig, ModelConfig, PassConfig, VllmConfig, set_current_vllm_config, ) from vllm.distributed import tensor_model_parallel_all_reduce from vllm.distributed.parallel_state import ( init_distributed_environment, initialize_model_parallel, ) from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.quantization.utils.w8a8_utils import ( Fp8LinearOp, GroupShape, ) from vllm.platforms import current_platform from vllm.utils.system_utils import update_environment_variables from ..utils import has_module_attribute, multi_gpu_test from .backend import TestBackend class TestAllReduceRMSNormModel(torch.nn.Module): def __init__(self, hidden_size=16, token_num=16, eps=1e-6): super().__init__() self.hidden_size = hidden_size self.eps = eps self.norm = [RMSNorm(hidden_size, eps) for i in range(4)] self.w = [torch.rand(hidden_size, hidden_size) for _ in range(3)] def forward(self, x): # avoid having graph input be an arg to a pattern directly z = torch.relu(x) x = resid = tensor_model_parallel_all_reduce(z) y = self.norm[0](x) z2 = torch.mm(y, self.w[0]) x2 = tensor_model_parallel_all_reduce(z2) y2, resid = self.norm[1](x2, resid) z3 = torch.mm(y2, self.w[1]) x3 = tensor_model_parallel_all_reduce(z3) y3, resid = self.norm[2](x3, resid) z4 = torch.mm(y3, self.w[2]) x4 = tensor_model_parallel_all_reduce(z4) y4, resid = self.norm[3](x4, resid) return y4 def ops_in_model_before(self): return [torch.ops.vllm.all_reduce.default] def ops_in_model_after(self): return [torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default] class TestAllReduceRMSNormStaticQuantFP8Model(torch.nn.Module): def __init__(self, hidden_size=16, token_num=16, eps=1e-6): super().__init__() self.hidden_size = hidden_size self.eps = eps self.norm = [RMSNorm(hidden_size, eps) for i in range(4)] self.wscale = [torch.rand(1, dtype=torch.float32) for _ in range(3)] self.w = [ torch.rand(hidden_size, hidden_size) .to(dtype=current_platform.fp8_dtype()) .t() for _ in range(3) ] self.fp8_linear = Fp8LinearOp( act_quant_static=True, act_quant_group_shape=GroupShape.PER_TENSOR, ) self.scale = [torch.rand(1, dtype=torch.float32) for _ in range(3)] def forward(self, hidden_states): # avoid having graph input be an arg to a pattern directly z = torch.relu(hidden_states) x = resid = tensor_model_parallel_all_reduce(z) y = self.norm[0](x) z2 = self.fp8_linear.apply( y, self.w[0], self.wscale[0], input_scale=self.scale[0] ) x2 = tensor_model_parallel_all_reduce(z2) y2, resid = self.norm[1](x2, resid) z3 = self.fp8_linear.apply( y2, self.w[1], self.wscale[1], input_scale=self.scale[1] ) x3 = tensor_model_parallel_all_reduce(z3) y3, resid = self.norm[2](x3, resid) # use resid here z4 = self.fp8_linear.apply( y3, self.w[2], self.wscale[2], input_scale=self.scale[2] ) x4 = tensor_model_parallel_all_reduce(z4) y4, resid = self.norm[3](x4, resid) # use resid here return y4 def ops_in_model_after(self): return [torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default] def ops_in_model_before(self): return [ torch.ops.vllm.all_reduce.default, torch.ops._C.static_scaled_fp8_quant.default if self.fp8_linear.quant_fp8.enabled() else torch.ops.aten.reciprocal.default, ] class TestAllReduceFusedAddRMSNormStaticQuantFP4Model(torch.nn.Module): def __init__(self, hidden_size=16, token_num=16, eps=1e-6): super().__init__() self.hidden_size = hidden_size self.eps = eps self.norm = [RMSNorm(hidden_size, eps) for i in range(4)] self.w = [torch.rand(hidden_size, hidden_size) for _ in range(3)] self.agscale = [torch.rand(1, dtype=torch.float32) for _ in range(3)] wgscale = [torch.rand(1, dtype=torch.float32) for _ in range(3)] self.alpha = [1 / (w * a) for w, a in zip(wgscale, self.agscale)] wq_gen, wscale_gen = zip( *(scaled_fp4_quant(w, wg) for w, wg in zip(self.w, wgscale)) ) self.wq, self.wscale = list(wq_gen), list(wscale_gen) print(f"{self.wq=}, {self.wscale=}") def forward(self, hidden_states): # avoid having graph input be an arg to a pattern directly z = torch.relu(hidden_states) x = resid = tensor_model_parallel_all_reduce(z) y = self.norm[0](x) yq, y_scale = scaled_fp4_quant(y, self.agscale[0]) z2 = cutlass_scaled_fp4_mm( yq, self.wq[0], y_scale, self.wscale[0], self.alpha[0], out_dtype=y.dtype ) x2 = tensor_model_parallel_all_reduce(z2) y2, resid = self.norm[1](x2, resid) yq2, y_scale2 = scaled_fp4_quant(y2, self.agscale[1]) z3 = cutlass_scaled_fp4_mm( yq2, self.wq[1], y_scale2, self.wscale[1], self.alpha[1], out_dtype=y2.dtype ) x3 = tensor_model_parallel_all_reduce(z3) y3, resid = self.norm[2](x3, resid) # use resid here yq3, y_scale3 = scaled_fp4_quant(y3, self.agscale[2]) z4 = cutlass_scaled_fp4_mm( yq3, self.wq[2], y_scale3, self.wscale[2], self.alpha[2], out_dtype=y3.dtype ) x4 = tensor_model_parallel_all_reduce(z4) y4, resid = self.norm[3](x4, resid) # use resid here return y4 def ops_in_model_after(self): return [torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default] def ops_in_model_before(self): return [ torch.ops.vllm.all_reduce.default, torch.ops._C.scaled_fp4_quant.default, ] @multi_gpu_test(num_gpus=2) @pytest.mark.parametrize( "test_model, enable_quant_fp8_custom_op", [ (TestAllReduceRMSNormModel, False), (TestAllReduceRMSNormStaticQuantFP8Model, True), (TestAllReduceRMSNormStaticQuantFP8Model, False), (TestAllReduceFusedAddRMSNormStaticQuantFP4Model, False), ], ) @pytest.mark.parametrize("batch_size", [8]) @pytest.mark.parametrize("seq_len", [8]) @pytest.mark.parametrize("hidden_size", [64]) @pytest.mark.parametrize("dtype", [torch.bfloat16]) @pytest.mark.parametrize("enable_rms_norm_custom_op", [True, False]) @pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"], reason="Only test on CUDA") @pytest.mark.skipif( not find_spec("flashinfer") or not has_module_attribute("flashinfer.comm", "trtllm_allreduce_fusion"), reason="flashinfer is not found or flashinfer " "is not compiled with trtllm_allreduce_fusion", ) def test_all_reduce_fusion_pass_replace( test_model: torch.nn.Module, batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype, enable_rms_norm_custom_op, enable_quant_fp8_custom_op, ): num_processes = 2 if ( test_model == TestAllReduceFusedAddRMSNormStaticQuantFP4Model and not current_platform.has_device_capability(100) ): pytest.skip( "Skip as nvfp4 is only supported on " "devices with compute capability 10.0 (Blackwell)" ) def run_torch_spawn(fn, nprocs): torch.multiprocessing.spawn( fn, args=( num_processes, test_model, batch_size, seq_len, hidden_size, dtype, enable_rms_norm_custom_op, enable_quant_fp8_custom_op, ), nprocs=nprocs, ) run_torch_spawn(all_reduce_fusion_pass_on_test_model, num_processes) def all_reduce_fusion_pass_on_test_model( local_rank: int, world_size: int, test_model_cls: torch.nn.Module, batch_size: int, seq_len: int, hidden_size: int, dtype: torch.dtype, enable_rms_norm_custom_op, enable_quant_fp8_custom_op, ): current_platform.seed_everything(0) device = torch.device(f"cuda:{local_rank}") torch.cuda.set_device(device) torch.set_default_device(device) torch.set_default_dtype(dtype) update_environment_variables( { "RANK": str(local_rank), "LOCAL_RANK": str(local_rank), "WORLD_SIZE": str(world_size), "MASTER_ADDR": "localhost", "MASTER_PORT": "12345", } ) init_distributed_environment() initialize_model_parallel(tensor_model_parallel_size=world_size) custom_ops = [] if enable_rms_norm_custom_op: custom_ops.append("+rms_norm") if enable_quant_fp8_custom_op: custom_ops.append("+quant_fp8") vllm_config = VllmConfig( compilation_config=CompilationConfig( mode=CompilationMode.VLLM_COMPILE, custom_ops=custom_ops ) ) vllm_config.compilation_config.pass_config = PassConfig( enable_fi_allreduce_fusion=True, enable_noop=True ) vllm_config.device_config = DeviceConfig(device=torch.device("cuda")) vllm_config.parallel_config.rank = local_rank # Setup rank for debug path # this is a fake model name to construct the model config # in the vllm_config, it's not really used. model_name = "RedHatAI/Llama-3.2-1B-Instruct-FP8" vllm_config.model_config = ModelConfig( model=model_name, trust_remote_code=True, dtype=dtype, seed=42 ) with set_current_vllm_config(vllm_config): all_reduce_fusion_pass = AllReduceFusionPass(vllm_config) noop_pass = NoOpEliminationPass(vllm_config) func_pass = FixFunctionalizationPass(vllm_config) cleanup_pass = PostCleanupPass(vllm_config) backend = TestBackend( noop_pass, all_reduce_fusion_pass, func_pass, cleanup_pass ) token_num = batch_size * seq_len model = test_model_cls(hidden_size, token_num) hidden_states = torch.randn((token_num, hidden_size), requires_grad=False) compiled_model = torch.compile(model, backend=backend) compiled_model(hidden_states) assert all_reduce_fusion_pass.matched_count == 4, ( f"{all_reduce_fusion_pass.matched_count=}" ) backend.check_before_ops(model.ops_in_model_before(), fully_replaced=False) backend.check_after_ops(model.ops_in_model_after()) del all_reduce_fusion_pass