"""Compare the outputs of HF and distributed vLLM when using greedy sampling. Run `pytest tests/distributed/test_basic_distributed_correctness.py --forked`. """ import pytest import torch MODELS = [ "facebook/opt-125m", "meta-llama/Llama-2-7b-hf", ] @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Need at least 2 GPUs to run the test.") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [5]) def test_models( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: hf_model = hf_runner(model, dtype=dtype) hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) del hf_model vllm_model = vllm_runner(model, dtype=dtype, tensor_parallel_size=2) vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) del vllm_model for i in range(len(example_prompts)): hf_output_ids, hf_output_str = hf_outputs[i] vllm_output_ids, vllm_output_str = vllm_outputs[i] assert hf_output_str == vllm_output_str, ( f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") assert hf_output_ids == vllm_output_ids, ( f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")