# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import pytest import ray from prometheus_client import REGISTRY import vllm.envs as envs from vllm import EngineArgs, LLMEngine from vllm.engine.arg_utils import AsyncEngineArgs from vllm.engine.async_llm_engine import AsyncLLMEngine from vllm.engine.metrics import RayPrometheusStatLogger from vllm.sampling_params import SamplingParams from vllm.test_utils import MODEL_WEIGHTS_S3_BUCKET @pytest.fixture(scope="function", autouse=True) def use_v0_only(monkeypatch): """ This module tests V0 internals, so set VLLM_USE_V1=0. """ monkeypatch.setenv('VLLM_USE_V1', '0') MODELS = [ "distilbert/distilgpt2", ] @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [128]) def test_metric_counter_prompt_tokens( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: with vllm_runner(model, dtype=dtype, disable_log_stats=False, gpu_memory_utilization=0.4) as vllm_model: tokenizer = vllm_model.llm.get_tokenizer() prompt_token_counts = [ len(tokenizer.encode(p)) for p in example_prompts ] # This test needs at least 2 prompts in a batch of different lengths to # verify their token count is correct despite padding. assert len(example_prompts) > 1, "at least 2 prompts are required" assert prompt_token_counts[0] != prompt_token_counts[1], ( "prompts of different lengths are required") vllm_prompt_token_count = sum(prompt_token_counts) _ = vllm_model.generate_greedy(example_prompts, max_tokens) stat_logger = vllm_model.llm.llm_engine.stat_loggers['prometheus'] metric_count = stat_logger.metrics.counter_prompt_tokens.labels( **stat_logger.labels)._value.get() assert vllm_prompt_token_count == metric_count, ( f"prompt token count: {vllm_prompt_token_count!r}\n" f"metric: {metric_count!r}") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [128]) def test_metric_counter_generation_tokens( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: with vllm_runner(model, dtype=dtype, disable_log_stats=False, gpu_memory_utilization=0.4) as vllm_model: vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) tokenizer = vllm_model.llm.get_tokenizer() stat_logger = vllm_model.llm.llm_engine.stat_loggers['prometheus'] metric_count = stat_logger.metrics.counter_generation_tokens.labels( **stat_logger.labels)._value.get() vllm_generation_count = 0 for i in range(len(example_prompts)): vllm_output_ids, vllm_output_str = vllm_outputs[i] prompt_ids = tokenizer.encode(example_prompts[i]) # vllm_output_ids contains both prompt tokens and generation tokens. # We're interested only in the count of the generation tokens. vllm_generation_count += len(vllm_output_ids) - len(prompt_ids) assert vllm_generation_count == metric_count, ( f"generation token count: {vllm_generation_count!r}\n" f"metric: {metric_count!r}") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize( "served_model_name", [None, [], ["ModelName0"], ["ModelName0", "ModelName1", "ModelName2"]]) def test_metric_set_tag_model_name(vllm_runner, model: str, dtype: str, served_model_name: list[str]) -> None: with vllm_runner(model, dtype=dtype, disable_log_stats=False, gpu_memory_utilization=0.3, served_model_name=served_model_name) as vllm_model: stat_logger = vllm_model.llm.llm_engine.stat_loggers['prometheus'] metrics_tag_content = stat_logger.labels["model_name"] if envs.VLLM_CI_USE_S3: model = f"{MODEL_WEIGHTS_S3_BUCKET}/{model}" if served_model_name is None or served_model_name == []: assert metrics_tag_content == model, ( f"Metrics tag model_name is wrong! expect: {model!r}\n" f"actual: {metrics_tag_content!r}") else: assert metrics_tag_content == served_model_name[0], ( f"Metrics tag model_name is wrong! expect: " f"{served_model_name[0]!r}\n" f"actual: {metrics_tag_content!r}") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [4]) @pytest.mark.parametrize("disable_log_stats", [True, False]) @pytest.mark.asyncio async def test_async_engine_log_metrics_regression( example_prompts, model: str, dtype: str, max_tokens: int, disable_log_stats: bool, ) -> None: """ Regression test ensuring async engine generates metrics when disable_log_stats=False (see: https://github.com/vllm-project/vllm/pull/4150#pullrequestreview-2008176678) """ engine_args = AsyncEngineArgs( model=model, dtype=dtype, disable_log_stats=disable_log_stats, ) async_engine = AsyncLLMEngine.from_engine_args(engine_args) for i, prompt in enumerate(example_prompts): results = async_engine.generate( prompt, SamplingParams(max_tokens=max_tokens), f"request-id-{i}", ) # Exhaust the async iterator to make the async engine work async for _ in results: pass assert_metrics(model, async_engine.engine, disable_log_stats, len(example_prompts)) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [4]) @pytest.mark.parametrize("disable_log_stats", [True, False]) def test_engine_log_metrics_regression( example_prompts, model: str, dtype: str, max_tokens: int, disable_log_stats: bool, ) -> None: engine_args = EngineArgs( model=model, dtype=dtype, disable_log_stats=disable_log_stats, ) engine = LLMEngine.from_engine_args(engine_args) for i, prompt in enumerate(example_prompts): engine.add_request( f"request-id-{i}", prompt, SamplingParams(max_tokens=max_tokens), ) while engine.has_unfinished_requests(): engine.step() if envs.VLLM_CI_USE_S3: model = f"{MODEL_WEIGHTS_S3_BUCKET}/{model}" assert_metrics(model, engine, disable_log_stats, len(example_prompts)) def assert_metrics(model: str, engine: LLMEngine, disable_log_stats: bool, num_requests: int) -> None: if disable_log_stats: with pytest.raises(AttributeError): _ = engine.stat_loggers else: assert (engine.stat_loggers is not None), "engine.stat_loggers should be set" # Ensure the count bucket of request-level histogram metrics matches # the number of requests as a simple sanity check to ensure metrics are # generated labels = {'model_name': model} request_histogram_metrics = [ "vllm:e2e_request_latency_seconds", "vllm:request_prompt_tokens", "vllm:request_generation_tokens", "vllm:request_params_n", "vllm:request_params_max_tokens", ] for metric_name in request_histogram_metrics: metric_value = REGISTRY.get_sample_value(f"{metric_name}_count", labels) assert ( metric_value == num_requests), "Metrics should be collected" @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [16]) def test_engine_log_metrics_ray( example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: # This test is quite weak - it only checks that we can use # RayPrometheusStatLogger without exceptions. # Checking whether the metrics are actually emitted is unfortunately # non-trivial. # We have to run in a Ray task for Ray metrics to be emitted correctly @ray.remote(num_gpus=1) def _inner(): class _RayPrometheusStatLogger(RayPrometheusStatLogger): def __init__(self, *args, **kwargs): self._i = 0 super().__init__(*args, **kwargs) def log(self, *args, **kwargs): self._i += 1 return super().log(*args, **kwargs) engine_args = EngineArgs( model=model, dtype=dtype, disable_log_stats=False, ) engine = LLMEngine.from_engine_args(engine_args) logger = _RayPrometheusStatLogger( local_interval=0.5, labels=dict(model_name=engine.model_config.served_model_name), vllm_config=engine.vllm_config) engine.add_logger("ray", logger) for i, prompt in enumerate(example_prompts): engine.add_request( f"request-id-{i}", prompt, SamplingParams(max_tokens=max_tokens), ) while engine.has_unfinished_requests(): engine.step() assert logger._i > 0, ".log must be called at least once" ray.get(_inner.remote())