# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project from collections.abc import Callable, Hashable from fractions import Fraction from weakref import WeakValueDictionary import torch from torch.nn import Parameter from vllm.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from vllm.logger import init_logger __all__ = [ "BasevLLMParameter", "PackedvLLMParameter", "PerTensorScaleParameter", "ModelWeightParameter", "ChannelQuantScaleParameter", "GroupQuantScaleParameter", "PackedColumnParameter", "RowvLLMParameter", ] logger = init_logger(__name__) class BasevLLMParameter(Parameter): """ Base parameter for vLLM linear layers. Extends the torch.nn.parameter by taking in a linear weight loader. Will copy the loaded weight into the parameter when the provided weight loader is called. """ def __new__(cls, data: torch.Tensor | None, **kwargs): return super().__new__(cls, data=data, requires_grad=False) def __init__(self, data: torch.Tensor, weight_loader: Callable): """ Initialize the BasevLLMParameter :param data: torch tensor with the parameter data :param weight_loader: weight loader callable :returns: a torch.nn.parameter """ # During weight loading, we often do something like: # narrowed_tensor = param.data.narrow(0, offset, len) # narrowed_tensor.copy_(real_weight) # expecting narrowed_tensor and param.data to share the same storage. # However, on TPUs, narrowed_tensor will lazily propagate to the base # tensor, which is param.data, leading to the redundant memory usage. # This sometimes causes OOM errors during model loading. To avoid this, # we sync the param tensor after its weight loader is called. from vllm.platforms import current_platform if current_platform.use_sync_weight_loader(): weight_loader = current_platform.make_synced_weight_loader(weight_loader) self._weight_loader = weight_loader self.tp_rank = get_tensor_model_parallel_rank() self.tp_size = get_tensor_model_parallel_world_size() @property def weight_loader(self) -> Callable: # NOTE(@ksayers) some models such as mamba_mixer2 override the # weight loader to support custom loading. In the future, model-specific # weight loading should be implemented via Model.load_weights. In the # meantime, support deleting and overriding `weight_loader` attribute if self._weight_loader is None: raise AttributeError( f"{self.__class__.__name__} weight_loader attribute has been deleted" ) return self._weight_loader @weight_loader.setter def weight_loader(self, value: Callable): self._weight_loader = value @weight_loader.deleter def weight_loader(self): self._weight_loader = None # type: ignore[assignment] def _is_1d_and_scalar(self, loaded_weight: torch.Tensor): cond1 = self.data.ndim == 1 and self.data.numel() == 1 cond2 = loaded_weight.ndim == 0 and loaded_weight.numel() == 1 return cond1 and cond2 def _assert_and_load(self, loaded_weight: torch.Tensor): assert self.data.shape == loaded_weight.shape or self._is_1d_and_scalar( loaded_weight ) self.data.copy_(loaded_weight) def load_column_parallel_weight(self, loaded_weight: torch.Tensor): self._assert_and_load(loaded_weight) def load_row_parallel_weight(self, loaded_weight: torch.Tensor): self._assert_and_load(loaded_weight) def load_merged_column_weight(self, loaded_weight: torch.Tensor, **kwargs): self._assert_and_load(loaded_weight) def load_qkv_weight(self, loaded_weight: torch.Tensor, **kwargs): self._assert_and_load(loaded_weight) def _shard_id_as_int(self, shard_id: str | int) -> int: if isinstance(shard_id, int): return shard_id # if not int, assume shard_id for qkv # map to int and return qkv_idxs = {"q": 0, "k": 1, "v": 2} assert isinstance(shard_id, str) assert shard_id in qkv_idxs return qkv_idxs[shard_id] @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} return super().__torch_function__(func, types, args, kwargs) class _ColumnvLLMParameter(BasevLLMParameter): """ Private class defining weight loading functionality (load_merged_column_weight, load_qkv_weight) for parameters being loaded into linear layers with column parallelism. This includes QKV and MLP layers which are not already fused on disk. Requires an output dimension to be defined. Called within the weight loader of each of the column parallel linear layers. """ def __init__(self, output_dim: int, **kwargs): self._output_dim = output_dim super().__init__(**kwargs) @property def output_dim(self): return self._output_dim def load_column_parallel_weight(self, loaded_weight: torch.Tensor): shard_size = self.data.shape[self.output_dim] loaded_weight = loaded_weight.narrow( self.output_dim, self.tp_rank * shard_size, shard_size ) assert self.data.shape == loaded_weight.shape self.data.copy_(loaded_weight) def load_merged_column_weight(self, loaded_weight: torch.Tensor, **kwargs): shard_offset = kwargs.get("shard_offset") shard_size = kwargs.get("shard_size") # TODO: move these to PackedColumnParameter and PackedvLLMParameter if ( isinstance(self, (PackedColumnParameter, PackedvLLMParameter)) and self.packed_dim == self.output_dim ): shard_size, shard_offset = self.adjust_shard_indexes_for_packing( shard_offset=shard_offset, shard_size=shard_size ) param_data = self.data param_data = param_data.narrow(self.output_dim, shard_offset, shard_size) loaded_weight = loaded_weight.narrow( self.output_dim, self.tp_rank * shard_size, shard_size ) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) def load_qkv_weight(self, loaded_weight: torch.Tensor, **kwargs): shard_offset = kwargs.get("shard_offset") shard_size = kwargs.get("shard_size") shard_id = kwargs.get("shard_id") num_heads = kwargs.get("num_heads") # TODO: move these to PackedColumnParameter and PackedvLLMParameter if ( isinstance(self, (PackedColumnParameter, PackedvLLMParameter)) and self.output_dim == self.packed_dim ): shard_size, shard_offset = self.adjust_shard_indexes_for_packing( shard_offset=shard_offset, shard_size=shard_size ) param_data = self.data shard_id = self.tp_rank if shard_id == "q" else self.tp_rank // num_heads param_data = param_data.narrow(self.output_dim, shard_offset, shard_size) loaded_weight = loaded_weight.narrow( self.output_dim, shard_id * shard_size, shard_size ) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class RowvLLMParameter(BasevLLMParameter): """ Parameter class defining weight_loading functionality (load_row_parallel_weight) for parameters being loaded into linear layers with row parallel functionality. Requires an input_dim to be defined. """ def __init__(self, input_dim: int, **kwargs): self._input_dim = input_dim super().__init__(**kwargs) @property def input_dim(self): return self._input_dim def load_row_parallel_weight(self, loaded_weight: torch.Tensor): shard_size = self.data.shape[self.input_dim] loaded_weight = loaded_weight.narrow( self.input_dim, self.tp_rank * shard_size, shard_size ) if len(loaded_weight.shape) == 0: loaded_weight = loaded_weight.reshape(1) assert self.data.shape == loaded_weight.shape self.data.copy_(loaded_weight) class ModelWeightParameter(_ColumnvLLMParameter, RowvLLMParameter): """ Parameter class for linear layer weights. Uses both column and row parallelism. """ pass class GroupQuantScaleParameter(_ColumnvLLMParameter, RowvLLMParameter): """ Parameter class for weight scales loaded for weights with grouped quantization. Uses both column and row parallelism. """ pass class ChannelQuantScaleParameter(_ColumnvLLMParameter): """ Parameter class for weight scales loaded for weights with channel-wise quantization. Equivalent to _ColumnvLLMParameter. """ pass class PerTensorScaleParameter(BasevLLMParameter): """ Parameter class for scales where the number of scales is equivalent to the number of logical matrices in fused linear layers (e.g. for QKV, there are 3 scales loaded from disk). This is relevant to weights with per-tensor quantization. Adds functionality to map the scalers to a shard during weight loading. Note: additional parameter manipulation may be handled for each quantization config specifically, within process_weights_after_loading """ def __init__(self, **kwargs): super().__init__(**kwargs) # For row parallel layers, no sharding needed # load weight into parameter as is def load_row_parallel_weight(self, *args, **kwargs): super().load_row_parallel_weight(*args, **kwargs) def load_merged_column_weight(self, *args, **kwargs): self._load_into_shard_id(*args, **kwargs) def load_qkv_weight(self, *args, **kwargs): self._load_into_shard_id(*args, **kwargs) def load_column_parallel_weight(self, *args, **kwargs): super().load_row_parallel_weight(*args, **kwargs) def _load_into_shard_id( self, loaded_weight: torch.Tensor, shard_id: str | int, **kwargs ): """ Slice the parameter data based on the shard id for loading. """ param_data = self.data shard_id = self._shard_id_as_int(shard_id) # AutoFP8 scales do not have a shape # compressed-tensors scales do have a shape if len(loaded_weight.shape) != 0: assert loaded_weight.shape[0] == 1 loaded_weight = loaded_weight[0] param_data = param_data[shard_id] assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) class PackedColumnParameter(_ColumnvLLMParameter): """ Parameter for model parameters which are packed on disk and support column parallelism only. See PackedvLLMParameter for more details on the packed properties. """ def __init__( self, packed_factor: int | Fraction, packed_dim: int, marlin_tile_size: int | None = None, bitblas_tile_size: int | None = None, **kwargs, ): self._packed_factor = packed_factor self._packed_dim = packed_dim self._marlin_tile_size = marlin_tile_size self._bitblas_tile_size = bitblas_tile_size super().__init__(**kwargs) @property def packed_dim(self): return self._packed_dim @property def packed_factor(self): return self._packed_factor @property def marlin_tile_size(self): return self._marlin_tile_size @property def bitblas_tile_size(self): return self._bitblas_tile_size def adjust_shard_indexes_for_packing(self, shard_size, shard_offset): return _adjust_shard_indexes_for_packing( shard_size=shard_size, shard_offset=shard_offset, packed_factor=self.packed_factor, marlin_tile_size=self.marlin_tile_size, bitblas_tile_size=self.bitblas_tile_size, ) class PackedvLLMParameter(ModelWeightParameter): """ Parameter for model weights which are packed on disk. Example: GPTQ Marlin weights are int4 or int8, packed into int32. Extends the ModelWeightParameter to take in the packed factor, the packed dimension, and optionally, marlin tile size for marlin kernels. Adjusts the shard_size and shard_offset for fused linear layers model weight loading by accounting for packing and optionally, marlin tile size. """ def __init__( self, packed_factor: int | Fraction, packed_dim: int, marlin_tile_size: int | None = None, bitblas_tile_size: int | None = None, **kwargs, ): self._packed_factor = packed_factor self._packed_dim = packed_dim self._marlin_tile_size = marlin_tile_size self._bitblas_tile_size = bitblas_tile_size super().__init__(**kwargs) @property def packed_dim(self): return self._packed_dim @property def packed_factor(self): return self._packed_factor @property def marlin_tile_size(self): return self._marlin_tile_size @property def bitblas_tile_size(self): return self._bitblas_tile_size def adjust_shard_indexes_for_packing(self, shard_size, shard_offset): return _adjust_shard_indexes_for_packing( shard_size=shard_size, shard_offset=shard_offset, packed_factor=self.packed_factor, marlin_tile_size=self.marlin_tile_size, bitblas_tile_size=self.bitblas_tile_size, ) class BlockQuantScaleParameter(_ColumnvLLMParameter, RowvLLMParameter): """ Parameter class for weight scales loaded for weights with block-wise quantization. Uses both column and row parallelism. """ pass class SharedWeightParameter(BasevLLMParameter): """ Parameter for weights with many shared tensors across a model For example, when applying transforms to the "gate" and "up" partitions of `MergedColumnParallelLinear`, the transform weights must stay separate tensors in order to allow for tensor memory sharing between layers. """ # global registry for sharing tensors based on passed `data_key` # this dict holds weaksrefs to avoid memory leak after model cleanup tensors_registry: WeakValueDictionary = WeakValueDictionary() # local container for strong references to shared tensors # this set compensates for the fact that torch.nn.Parameter # and Parameter subclasses do not hold reliable references to tensors local_tensors: set[torch.Tensor] # dictionary mapping partition indices to associated parameters partitions: dict[int, ModelWeightParameter | Parameter] def __new__(cls, **kwargs): return super().__new__(cls, data=None, **kwargs) def __init__(self, input_dim: int = 1, output_dim: int = 0, **kwargs): weight_loader: Callable = kwargs.get("weight_loader") # type: ignore[assignment] super().__init__(data=None, weight_loader=weight_loader) self.local_tensors = set() self.partitions = {} self.kwargs = { "input_dim": input_dim, "output_dim": output_dim, "weight_loader": self._fake_weight_loader, } if self.tp_size > 1: raise NotImplementedError( f"{self.__class__.__name__} does not " "currently support tensor parallelism" ) def add_partition(self, index: int, data_key: Hashable, *args, **kwargs): """ Add a partition to the weight parameter. Partitions whose `data_key` is the same will share tensor data :param index: index of partition to add :param data_key: hashable key used to key shared tensors :param *args: arguments for `torch.empty` :param **kwargs: keyword arguments for `torch.empty` """ # load (shared) tensor using `data_key` if data_key not in self.tensors_registry: data = torch.empty(*args, **kwargs) self.tensors_registry[data_key] = data else: data = self.tensors_registry[data_key] # create associated model parameter self.partitions[index] = ModelWeightParameter(data=data, **self.kwargs) # type: ignore[arg-type] # hold local reference, since ModelWeightParameter does not # see https://github.com/pytorch/pytorch/issues/75932 self.local_tensors.add(data) def load_column_parallel_weight(self, loaded_weight: torch.Tensor): assert len(self.partitions) == 1 and 0 in self.partitions partition = self.partitions[0] ModelWeightParameter.load_column_parallel_weight(partition, loaded_weight) def load_row_parallel_weight(self, loaded_weight: torch.Tensor): assert len(self.partitions) == 1 and 0 in self.partitions partition = self.partitions[0] ModelWeightParameter.load_row_parallel_weight(partition, loaded_weight) def load_merged_column_weight(self, loaded_weight: torch.Tensor, **kwargs): partition_id = kwargs.pop("shard_id") partition_id = self._shard_id_as_int(partition_id) partition = self.partitions[partition_id] input_dim = self.kwargs.get("input_dim") shard_size = partition.data.size(input_dim) // self.tp_size shard_offset = self.tp_rank * shard_size ModelWeightParameter.load_merged_column_weight( partition, loaded_weight, shard_offset=shard_offset, shard_size=shard_size ) def load_qkv_weight(self, loaded_weight: torch.Tensor, **kwargs): partition_id = self._shard_id_as_int(kwargs.pop("shard_id")) partition = self.partitions[partition_id] input_dim = self.kwargs.get("input_dim") shard_size = partition.data.size(input_dim) // self.tp_size shard_offset = self.tp_rank * shard_size shard_id = "q" # fake first partition num_heads = kwargs.get("num_heads") ModelWeightParameter.load_qkv_weight( partition, loaded_weight, shard_offset=shard_offset, shard_size=shard_size, shard_id=shard_id, num_heads=num_heads, ) def process_weights_after_loading(self): for key in self.partitions: self.partitions[key] = torch.nn.Parameter( data=self.partitions[key].data, requires_grad=False ) @property def data(self): raise ValueError( "Accessing `data` of a " "`PartitionedModelWeightParameter` is not allowed. " "Instead, use `get_partition` to get the weight of " "the particular partition you want to access" ) def _fake_weight_loader( self, param: BasevLLMParameter, loaded_weight: torch.Tensor, loaded_weight_shard_id: str | int | None, ): raise ValueError( "When loading partition weights of " f"{self.__class__.__name__}, use methods provided by " f"{self.__class__.__name__}, not partition loader" ) def permute_param_layout_( param: BasevLLMParameter, input_dim: int, output_dim: int, **kwargs ) -> BasevLLMParameter: """ Permute a parameter's layout to the specified input and output dimensions, useful for forcing the parameter into a known layout, for example, if I need a packed (quantized) weight matrix to be in the layout {input_dim = 0, output_dim = 1, packed_dim = 0} then I can call: permute_param_layout_(x, input_dim=0, output_dim=1, packed_dim=0) to ensure x is in the correct layout (permuting it to the correct layout if required, asserting if it cannot get it to the correct layout) """ curr_input_dim = getattr(param, "input_dim", None) curr_output_dim = getattr(param, "output_dim", None) if curr_input_dim is None or curr_output_dim is None: assert param.data.dim() == 2, ( "permute_param_layout_ only supports 2D parameters when either " "input_dim or output_dim is not set" ) # if one of the dimensions is not set, set it to the opposite of the other # we can only do this since we asserted the parameter is 2D above if curr_input_dim is None: assert curr_output_dim is not None, "either input or output dim must be set" curr_input_dim = (curr_output_dim + 1) % 2 if curr_output_dim is None: assert curr_input_dim is not None, "either input or output dim must be set" curr_output_dim = (curr_input_dim + 1) % 2 # create permutation from the current layout to the layout with # self.input_dim at input_dim and self.output_dim at output_dim preserving # other dimensions perm = [ i for i in range(param.data.dim()) if i not in [curr_input_dim, curr_output_dim] ] perm.insert(input_dim, curr_input_dim) perm.insert(output_dim, curr_output_dim) if "packed_dim" in kwargs: assert ( hasattr(param, "packed_dim") and param.packed_dim == perm[kwargs["packed_dim"]] ), "permute_param_layout_ currently doesn't support repacking" param.data = param.data.permute(*perm) if hasattr(param, "_input_dim"): param._input_dim = input_dim if hasattr(param, "_output_dim"): param._output_dim = output_dim if "packed_dim" in kwargs and hasattr(param, "_packed_dim"): param._packed_dim = kwargs["packed_dim"] return param def _adjust_shard_indexes_for_marlin(shard_size, shard_offset, marlin_tile_size): return shard_size * marlin_tile_size, shard_offset * marlin_tile_size def _adjust_shard_indexes_for_bitblas(shard_size, shard_offset, bitblas_tile_size): return shard_size // bitblas_tile_size, shard_offset // bitblas_tile_size def _adjust_shard_indexes_for_packing( shard_size, shard_offset, packed_factor, marlin_tile_size, bitblas_tile_size ): shard_size = shard_size // packed_factor shard_offset = shard_offset // packed_factor if marlin_tile_size is not None: return _adjust_shard_indexes_for_marlin( shard_size=shard_size, shard_offset=shard_offset, marlin_tile_size=marlin_tile_size, ) elif bitblas_tile_size is not None: return _adjust_shard_indexes_for_bitblas( shard_size=shard_size, shard_offset=shard_offset, bitblas_tile_size=bitblas_tile_size, ) return shard_size, shard_offset