/* * Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include "dispatch_utils.h" #include "cuda_utils.h" #include "launch_bounds_utils.h" #include "nvfp4_utils.cuh" namespace vllm { // silu in float32 __device__ __forceinline__ float silu(float x) { return __fdividef(x, (1.f + __expf(-x))); } __device__ __forceinline__ float2 silu2(float2 x) { return make_float2(silu(x.x), silu(x.y)); } template __inline__ __device__ PackedVec compute_silu_mul(PackedVec& vec, PackedVec& vec2) { PackedVec result; using packed_type = typename TypeConverter::Type; #pragma unroll for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; ++i) { // silu_mul in float32 if constexpr (std::is_same_v) { float2 silu_vec = silu2(__half22float2(vec.elts[i])); result.elts[i] = __float22half2_rn(__fmul2_rn(silu_vec, __half22float2(vec2.elts[i]))); } else { float2 silu_vec = silu2(__bfloat1622float2(vec.elts[i])); result.elts[i] = __float22bfloat162_rn( __fmul2_rn(silu_vec, __bfloat1622float2(vec2.elts[i]))); } } return result; } // Use UE4M3 by default. template __global__ void __launch_bounds__(1024, VLLM_BLOCKS_PER_SM(1024)) silu_mul_cvt_fp16_to_fp4(int32_t numRows, int32_t numCols, Type const* in, float const* SFScale, uint32_t* out, uint32_t* SFout) { using PackedVec = PackedVec; static constexpr int CVT_FP4_NUM_THREADS_PER_SF = (CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD); static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD, "Vec size is not matched."); // Get the global scaling factor, which will be applied to the SF. // Note SFScale is the same as next GEMM's alpha, which is // (448.f / (Alpha_A / 6.f)). float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[0]; // Input tensor row/col loops. for (int rowIdx = blockIdx.x; rowIdx < numRows; rowIdx += gridDim.x) { for (int colIdx = threadIdx.x; colIdx < numCols / CVT_FP4_ELTS_PER_THREAD; colIdx += blockDim.x) { int64_t inOffset = rowIdx * (numCols * 2 / CVT_FP4_ELTS_PER_THREAD) + colIdx; int64_t inOffset2 = rowIdx * (numCols * 2 / CVT_FP4_ELTS_PER_THREAD) + numCols / CVT_FP4_ELTS_PER_THREAD + colIdx; PackedVec in_vec = reinterpret_cast(in)[inOffset]; PackedVec in_vec2 = reinterpret_cast(in)[inOffset2]; // Get the output tensor offset. // Same as inOffset because 8 elements are packed into one uint32_t. int64_t outOffset = rowIdx * (numCols / CVT_FP4_ELTS_PER_THREAD) + colIdx; auto& out_pos = out[outOffset]; // Compute silu and mul PackedVec out_silu_mul = compute_silu_mul(in_vec, in_vec2); auto sf_out = cvt_quant_to_fp4_get_sf_out_offset( rowIdx, colIdx, numCols, SFout); out_pos = cvt_warp_fp16_to_fp4(out_silu_mul, SFScaleVal, sf_out); } } } } // namespace vllm void silu_and_mul_nvfp4_quant_sm1xxa(torch::Tensor& output, // [..., d] torch::Tensor& output_sf, torch::Tensor& input, // [..., 2 * d] torch::Tensor& input_sf) { int32_t m = input.size(0); int32_t n = input.size(1) / 2; TORCH_CHECK(n % 16 == 0, "The N dimension must be multiple of 16."); TORCH_CHECK(input.scalar_type() == at::ScalarType::Half || input.scalar_type() == at::ScalarType::BFloat16, "Unsupported input data type for quantize_to_fp4."); int multiProcessorCount = get_device_attribute(cudaDevAttrMultiProcessorCount, -1); auto input_sf_ptr = static_cast(input_sf.data_ptr()); auto sf_out = static_cast(output_sf.data_ptr()); auto output_ptr = static_cast(output.data_ptr()); const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); dim3 block(std::min(int(n / ELTS_PER_THREAD), 1024)); int const numBlocksPerSM = vllm_runtime_blocks_per_sm(static_cast(block.x)); dim3 grid(std::min(int(m), multiProcessorCount * numBlocksPerSM)); VLLM_DISPATCH_HALF_TYPES( input.scalar_type(), "silu_and_mul_nvfp4_quant_kernel", [&] { using cuda_type = vllm::CUDATypeConverter::Type; auto input_ptr = static_cast(input.data_ptr()); vllm::silu_mul_cvt_fp16_to_fp4<<>>( m, n, input_ptr, input_sf_ptr, reinterpret_cast(output_ptr), reinterpret_cast(sf_out)); }); }