vllm/benchmarks/benchmark_hash.py
Lumis Chen 9bcf92295a
[Core] Add xxHash as a high-performance hash option for accelerating prefix caching (#29163)
Signed-off-by: LuminolT <lumischen01@gmail.com>
Signed-off-by: Lumis Chen <lumischen01@gmail.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-12-03 16:06:57 +00:00

121 lines
3.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Micro benchmark comparing built-in hash(), SHA-256, and xxHash.
This focuses on a single test payload shaped like the prefix-cache hash input:
(32-byte bytes object, 32-int tuple)
Usage:
python benchmarks/hash_micro_benchmark.py --iterations 20000
"""
from __future__ import annotations
import argparse
import random
import statistics
import time
from collections.abc import Callable, Iterable
from vllm.utils.hashing import sha256, xxhash
def _generate_test_data(seed: int) -> tuple[bytes, tuple[int, ...]]:
"""Generate a deterministic test payload."""
random.seed(seed)
bytes_data = bytes(random.getrandbits(8) for _ in range(32))
int_tuple = tuple(random.randint(1, 1_000_000) for _ in range(32))
return (bytes_data, int_tuple)
def _benchmark_func(func: Callable[[tuple], object], data: tuple, iterations: int):
"""Return (avg_seconds, std_seconds) for hashing `data` `iterations` times."""
times: list[float] = []
# Warm-up to avoid first-run noise.
for _ in range(200):
func(data)
for _ in range(iterations):
start = time.perf_counter()
func(data)
end = time.perf_counter()
times.append(end - start)
avg = statistics.mean(times)
std = statistics.stdev(times) if len(times) > 1 else 0.0
return avg, std
def _run_benchmarks(
benchmarks: Iterable[tuple[str, Callable[[tuple], object]]],
data: tuple,
iterations: int,
):
"""Yield (name, avg, std) for each benchmark, skipping unavailable ones."""
for name, func in benchmarks:
try:
avg, std = _benchmark_func(func, data, iterations)
except ModuleNotFoundError as exc:
print(f"Skipping {name}: {exc}")
continue
yield name, avg, std
def builtin_hash(data: tuple) -> int:
"""Wrapper for Python's built-in hash()."""
return hash(data)
def main() -> None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--iterations",
type=int,
default=10_000,
help="Number of measured iterations per hash function.",
)
parser.add_argument(
"--seed", type=int, default=42, help="Random seed for test payload."
)
args = parser.parse_args()
data = _generate_test_data(args.seed)
benchmarks = (
("SHA256 (pickle)", sha256),
("xxHash (pickle)", xxhash),
("built-in hash()", builtin_hash),
)
print("=" * 60)
print("HASH FUNCTION MICRO BENCHMARK")
print("=" * 60)
print("Test data: (32-byte bytes object, 32-int tuple)")
print(f"Iterations: {args.iterations:,}")
print("=" * 60)
results = list(_run_benchmarks(benchmarks, data, args.iterations))
builtin_entry = next((r for r in results if r[0] == "built-in hash()"), None)
print("\nResults:")
for name, avg, std in results:
print(f" {name:16s}: {avg * 1e6:8.2f} ± {std * 1e6:6.2f} μs")
if builtin_entry:
_, builtin_avg, _ = builtin_entry
print("\n" + "=" * 60)
print("SUMMARY (relative to built-in hash())")
print("=" * 60)
for name, avg, _ in results:
if name == "built-in hash()":
continue
speed_ratio = avg / builtin_avg
print(f"{name} is {speed_ratio:.1f}x slower than built-in hash()")
else:
print("\nBuilt-in hash() result missing; cannot compute speed ratios.")
if __name__ == "__main__":
main()