mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 07:05:02 +08:00
Signed-off-by: Lasha <26011196+lashahub@users.noreply.github.com> Signed-off-by: Lasha Koroshinadze <26011196+lashahub@users.noreply.github.com> Co-authored-by: Isotr0py <2037008807@qq.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
126 lines
3.8 KiB
Python
126 lines
3.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2025 The vLLM team.
|
|
# Copyright 2025 NVIDIA CORPORATION and the HuggingFace Inc. team. All rights
|
|
# reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from unittest.mock import MagicMock
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from transformers import PretrainedConfig
|
|
|
|
from tests.models.registry import HF_EXAMPLE_MODELS
|
|
|
|
|
|
class MockAudioFlamingo3Config(PretrainedConfig):
|
|
model_type = "audioflamingo3"
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.audio_config = PretrainedConfig()
|
|
self.text_config = PretrainedConfig()
|
|
|
|
|
|
class MockAudioFlamingo3Processor:
|
|
def __init__(self):
|
|
self.audio_token = "<sound>"
|
|
self.audio_token_id = 12345
|
|
self.feature_extractor = MockFeatureExtractor()
|
|
|
|
def __call__(self, text=None, audios=None, **kwargs):
|
|
return {"input_ids": [1, 2, 3], "input_features": [np.zeros((3000, 80))]}
|
|
|
|
|
|
class MockFeatureExtractor:
|
|
def __init__(self):
|
|
self.sampling_rate = 16000
|
|
self.chunk_length = 30
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_ctx():
|
|
config = MockAudioFlamingo3Config()
|
|
|
|
ctx = MagicMock()
|
|
ctx.get_hf_config.return_value = config
|
|
ctx.get_hf_processor.return_value = MockAudioFlamingo3Processor()
|
|
ctx.model_config.hf_config = config
|
|
return ctx
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def check_transformers_version():
|
|
# Check if the model is supported by the current transformers version
|
|
model_info = HF_EXAMPLE_MODELS.get_hf_info("AudioFlamingo3ForConditionalGeneration")
|
|
model_info.check_transformers_version(on_fail="skip")
|
|
|
|
|
|
def test_audio_chunk_counting(mock_ctx):
|
|
from vllm.model_executor.models.audioflamingo3 import (
|
|
AudioFlamingo3DummyInputsBuilder,
|
|
AudioFlamingo3MultiModalProcessor,
|
|
AudioFlamingo3ProcessingInfo,
|
|
)
|
|
|
|
info = AudioFlamingo3ProcessingInfo(mock_ctx)
|
|
processor = AudioFlamingo3MultiModalProcessor(
|
|
info, AudioFlamingo3DummyInputsBuilder(info)
|
|
)
|
|
|
|
sr = 16000
|
|
audio_1 = np.zeros(30 * sr)
|
|
audio_2 = np.zeros(45 * sr)
|
|
|
|
mm_data = {"audio": [audio_1, audio_2]}
|
|
prompt = "<|user|>Listen.<|end|>"
|
|
|
|
from vllm.multimodal.processing import BaseMultiModalProcessor
|
|
|
|
def mock_base_call(self, prompt, mm_data, mm_kwargs, tok_kwargs):
|
|
return {"input_ids": [1, 2, 3], "input_features": torch.randn(1, 80, 3000)}
|
|
|
|
with pytest.MonkeyPatch.context() as mp:
|
|
mp.setattr(BaseMultiModalProcessor, "_call_hf_processor", mock_base_call)
|
|
|
|
processed = processor._call_hf_processor(prompt, mm_data, {}, {})
|
|
|
|
chunk_counts = processed["chunk_counts"]
|
|
|
|
assert chunk_counts[0].item() == 1
|
|
assert chunk_counts[1].item() == 2
|
|
assert len(chunk_counts) == 2
|
|
|
|
|
|
def test_dummy_data_generation(mock_ctx):
|
|
from vllm.model_executor.models.audioflamingo3 import (
|
|
AudioFlamingo3DummyInputsBuilder,
|
|
AudioFlamingo3ProcessingInfo,
|
|
)
|
|
|
|
info = AudioFlamingo3ProcessingInfo(mock_ctx)
|
|
builder = AudioFlamingo3DummyInputsBuilder(info)
|
|
|
|
mm_counts = {"audio": 2}
|
|
dummy_data = builder.get_dummy_mm_data(100, mm_counts, None)
|
|
|
|
assert "audio" in dummy_data
|
|
assert len(dummy_data["audio"]) == 2
|
|
|
|
expected_len = 600 * 16000
|
|
assert len(dummy_data["audio"][0]) == expected_len
|