mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 06:25:01 +08:00
287 lines
10 KiB
Python
287 lines
10 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.compilation.counter import compilation_counter
|
|
from vllm.compilation.decorators import ignore_torch_compile, support_torch_compile
|
|
from vllm.config import (
|
|
CacheConfig,
|
|
CompilationConfig,
|
|
CompilationMode,
|
|
CUDAGraphMode,
|
|
VllmConfig,
|
|
set_current_vllm_config,
|
|
)
|
|
from vllm.forward_context import BatchDescriptor, set_forward_context
|
|
from vllm.utils.torch_utils import is_torch_equal_or_newer
|
|
|
|
# This import automatically registers `torch.ops.silly.attention`
|
|
from . import silly_attention # noqa: F401
|
|
|
|
BATCH_SIZE = 32
|
|
MLP_SIZE = 128
|
|
|
|
|
|
@torch.inference_mode
|
|
def run_model(
|
|
vllm_config: VllmConfig, model: nn.Module, cudagraph_runtime_mode: CUDAGraphMode
|
|
):
|
|
with set_forward_context({}, vllm_config=vllm_config):
|
|
# warmup for the model with cudagraph_mode NONE
|
|
model(torch.randn(BATCH_SIZE, MLP_SIZE).cuda())
|
|
|
|
# simulate cudagraphs capturing
|
|
with set_forward_context(
|
|
{},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=2,
|
|
),
|
|
):
|
|
model(torch.randn(2, MLP_SIZE).cuda())
|
|
with set_forward_context(
|
|
{},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=1,
|
|
),
|
|
):
|
|
model(torch.randn(1, MLP_SIZE).cuda())
|
|
|
|
# simulate cudagraphs replay
|
|
with set_forward_context(
|
|
{},
|
|
vllm_config=vllm_config,
|
|
cudagraph_runtime_mode=cudagraph_runtime_mode,
|
|
batch_descriptor=BatchDescriptor(
|
|
num_tokens=2,
|
|
),
|
|
):
|
|
output = model(torch.randn(2, MLP_SIZE).cuda())
|
|
|
|
output = output.cpu()
|
|
return output.cpu()
|
|
|
|
|
|
@pytest.mark.parametrize("use_inductor_graph_partition", [True, False])
|
|
def test_ignore_torch_compile_decorator(use_inductor_graph_partition, monkeypatch):
|
|
# disable compile cache so that we can count the number of compilations
|
|
# appropriately
|
|
monkeypatch.setenv("VLLM_DISABLE_COMPILE_CACHE", "1")
|
|
|
|
if use_inductor_graph_partition and not is_torch_equal_or_newer("2.9.0.dev"):
|
|
pytest.skip("inductor graph partition is only available in PyTorch 2.9+")
|
|
|
|
# piecewise
|
|
vllm_config = VllmConfig(
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
splitting_ops=["silly::attention"],
|
|
cudagraph_capture_sizes=[1, 2],
|
|
use_inductor_graph_partition=use_inductor_graph_partition,
|
|
)
|
|
)
|
|
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
|
|
|
|
expected_num_graphs_seen = 1
|
|
expected_num_cudagraph_captured = (
|
|
4 # num_cudagraph_sizes * num cudagraphs to capture
|
|
)
|
|
if use_inductor_graph_partition:
|
|
expected_num_piecewise_graphs_seen = 1
|
|
expected_num_piecewise_capturable_graphs_seen = 1
|
|
expected_num_backend_compilations = 1
|
|
else:
|
|
expected_num_piecewise_graphs_seen = 3
|
|
expected_num_piecewise_capturable_graphs_seen = 2
|
|
expected_num_backend_compilations = 2
|
|
|
|
@support_torch_compile
|
|
class A(nn.Module):
|
|
def __init__(
|
|
self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x + x
|
|
attn_output = torch.empty_like(x)
|
|
torch.ops.silly.attention(x, x, x, attn_output)
|
|
x = attn_output
|
|
x = x * 3
|
|
return x
|
|
|
|
@ignore_torch_compile
|
|
class B(A): ...
|
|
|
|
@support_torch_compile
|
|
class C(B): ...
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
mod_A = A(vllm_config=vllm_config, prefix="").eval().cuda()
|
|
|
|
# A has support_torch_compile
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=expected_num_graphs_seen,
|
|
num_piecewise_graphs_seen=expected_num_piecewise_graphs_seen,
|
|
num_piecewise_capturable_graphs_seen=expected_num_piecewise_capturable_graphs_seen,
|
|
num_backend_compilations=expected_num_backend_compilations,
|
|
num_cudagraph_captured=expected_num_cudagraph_captured,
|
|
):
|
|
run_model(vllm_config, mod_A, cudagraph_runtime_mode)
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
mod_B = B(vllm_config=vllm_config, prefix="").eval().cuda()
|
|
|
|
# B's ignore_torch_compile should override A's support_torch_compile
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=0,
|
|
num_piecewise_graphs_seen=0,
|
|
num_piecewise_capturable_graphs_seen=0,
|
|
num_backend_compilations=0,
|
|
num_cudagraph_captured=0,
|
|
):
|
|
run_model(vllm_config, mod_B, cudagraph_runtime_mode)
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
mod_C = C(vllm_config=vllm_config, prefix="").eval().cuda()
|
|
|
|
# C's support_torch_compile should override B's ignore_torch_compile
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=expected_num_graphs_seen,
|
|
num_piecewise_graphs_seen=expected_num_piecewise_graphs_seen,
|
|
num_piecewise_capturable_graphs_seen=expected_num_piecewise_capturable_graphs_seen,
|
|
num_backend_compilations=expected_num_backend_compilations,
|
|
num_cudagraph_captured=expected_num_cudagraph_captured,
|
|
):
|
|
run_model(vllm_config, mod_C, cudagraph_runtime_mode)
|
|
|
|
|
|
# Only enable torch.compile if
|
|
# vllm_config.cache_config.kv_sharing_fast_prefill=True
|
|
@support_torch_compile(
|
|
enable_if=lambda vllm_config: vllm_config.cache_config.kv_sharing_fast_prefill
|
|
)
|
|
class B(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x + x
|
|
attn_output = torch.empty_like(x)
|
|
torch.ops.silly.attention(x, x, x, attn_output)
|
|
x = attn_output
|
|
x = x + x
|
|
return x
|
|
|
|
|
|
# Only enable torch.compile if
|
|
# vllm_config.cache_config.kv_sharing_fast_prefill=False
|
|
@support_torch_compile(
|
|
enable_if=lambda vllm_config: not vllm_config.cache_config.kv_sharing_fast_prefill
|
|
)
|
|
class A(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs) -> None:
|
|
super().__init__()
|
|
self.mod1 = B(vllm_config=vllm_config, prefix=prefix, **kwargs)
|
|
self.mod2 = B(vllm_config=vllm_config, prefix=prefix, **kwargs)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.mod1(x)
|
|
attn_output = torch.empty_like(x)
|
|
torch.ops.silly.attention(x, x, x, attn_output)
|
|
x = attn_output
|
|
x = self.mod2(x)
|
|
return x
|
|
|
|
|
|
@pytest.mark.parametrize("use_inductor_graph_partition", [True, False])
|
|
def test_conditional_compile_enable_if(use_inductor_graph_partition, monkeypatch):
|
|
# disable compile cache so that we can count the number of compilations
|
|
# appropriately
|
|
monkeypatch.setenv("VLLM_DISABLE_COMPILE_CACHE", "1")
|
|
|
|
if use_inductor_graph_partition and not is_torch_equal_or_newer("2.9.0.dev"):
|
|
pytest.skip("inductor graph partition is only available in PyTorch 2.9+")
|
|
|
|
vllm_config = VllmConfig(
|
|
cache_config=CacheConfig(
|
|
kv_sharing_fast_prefill=True,
|
|
),
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
splitting_ops=["silly::attention"],
|
|
cudagraph_capture_sizes=[1, 2],
|
|
use_inductor_graph_partition=use_inductor_graph_partition,
|
|
),
|
|
)
|
|
cudagraph_runtime_mode = CUDAGraphMode.PIECEWISE
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
mod_A = A(vllm_config=vllm_config, prefix="").eval().cuda()
|
|
|
|
if use_inductor_graph_partition:
|
|
expected_num_piecewise_graphs_seen = 2
|
|
expected_num_piecewise_capturable_graphs_seen = 2
|
|
expected_num_backend_compilations = 2
|
|
else:
|
|
expected_num_piecewise_graphs_seen = 6
|
|
expected_num_piecewise_capturable_graphs_seen = 4
|
|
expected_num_backend_compilations = 4
|
|
|
|
# A has support_torch_compile but enable_if fn returns False
|
|
# enalbe_if will be True for B, so we expect mod1 and mod2
|
|
# to be compiled
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=2,
|
|
num_piecewise_graphs_seen=expected_num_piecewise_graphs_seen,
|
|
# 3 piecewise graphs per instance of B()
|
|
num_piecewise_capturable_graphs_seen=expected_num_piecewise_capturable_graphs_seen,
|
|
num_backend_compilations=expected_num_backend_compilations,
|
|
num_cudagraph_captured=8,
|
|
# num_cudagraph_sizes * num cudagraphable graphs to capture
|
|
):
|
|
run_model(vllm_config, mod_A, cudagraph_runtime_mode)
|
|
|
|
# Set kv_sharing_fast_prefill=False
|
|
# which will cause A to be compiled and B to not be compiled
|
|
vllm_config = VllmConfig(
|
|
cache_config=CacheConfig(
|
|
kv_sharing_fast_prefill=False,
|
|
),
|
|
compilation_config=CompilationConfig(
|
|
mode=CompilationMode.VLLM_COMPILE,
|
|
splitting_ops=["silly::attention"],
|
|
cudagraph_capture_sizes=[1, 2],
|
|
use_inductor_graph_partition=use_inductor_graph_partition,
|
|
),
|
|
)
|
|
|
|
with set_current_vllm_config(vllm_config):
|
|
mod_A = A(vllm_config=vllm_config, prefix="").eval().cuda()
|
|
|
|
if use_inductor_graph_partition:
|
|
expected_num_piecewise_graphs_seen = 1
|
|
expected_num_piecewise_capturable_graphs_seen = 1
|
|
expected_num_backend_compilations = 1
|
|
else:
|
|
# 3 attn ops and 4 non-attn ops
|
|
expected_num_piecewise_graphs_seen = 7
|
|
expected_num_piecewise_capturable_graphs_seen = 4
|
|
expected_num_backend_compilations = 4
|
|
|
|
with compilation_counter.expect(
|
|
num_graphs_seen=1,
|
|
num_piecewise_graphs_seen=expected_num_piecewise_graphs_seen,
|
|
# 3 attn ops and 4 non-attn ops
|
|
num_piecewise_capturable_graphs_seen=expected_num_piecewise_capturable_graphs_seen,
|
|
num_backend_compilations=expected_num_backend_compilations,
|
|
num_cudagraph_captured=8,
|
|
# num_cudagraph_sizes * num cudagraphable graphs to capture
|
|
):
|
|
run_model(vllm_config, mod_A, cudagraph_runtime_mode)
|