vllm/tests/multimodal/test_inputs.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

92 lines
3.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from vllm.multimodal.inputs import MultiModalKwargs, NestedTensors
pytestmark = pytest.mark.cpu_test
def assert_nested_tensors_equal(expected: NestedTensors, actual: NestedTensors):
assert type(expected) == type(actual) # noqa: E721
if isinstance(expected, torch.Tensor):
assert torch.equal(expected, actual)
else:
for expected_item, actual_item in zip(expected, actual):
assert_nested_tensors_equal(expected_item, actual_item)
def assert_multimodal_inputs_equal(
expected: MultiModalKwargs, actual: MultiModalKwargs
):
assert set(expected.keys()) == set(actual.keys())
for key in expected:
assert_nested_tensors_equal(expected[key], actual[key])
def test_multimodal_input_batch_single_tensor():
t = torch.rand([1, 2])
result = MultiModalKwargs.batch([{"image": t}])
assert_multimodal_inputs_equal(result, {"image": t.unsqueeze(0)})
def test_multimodal_input_batch_multiple_tensors():
a = torch.rand([1, 1, 2])
b = torch.rand([1, 1, 2])
c = torch.rand([1, 1, 2])
result = MultiModalKwargs.batch([{"image": a}, {"image": b}, {"image": c}])
assert_multimodal_inputs_equal(result, {"image": torch.stack([a, b, c])})
def test_multimodal_input_batch_multiple_heterogeneous_tensors():
a = torch.rand([1, 2, 2])
b = torch.rand([1, 3, 2])
c = torch.rand([1, 4, 2])
result = MultiModalKwargs.batch([{"image": a}, {"image": b}, {"image": c}])
assert_multimodal_inputs_equal(result, {"image": [a, b, c]})
def test_multimodal_input_batch_nested_tensors():
a = torch.rand([2, 3])
b = torch.rand([2, 3])
c = torch.rand([2, 3])
result = MultiModalKwargs.batch([{"image": [a]}, {"image": [b]}, {"image": [c]}])
assert_multimodal_inputs_equal(
result, {"image": torch.stack([a.unsqueeze(0), b.unsqueeze(0), c.unsqueeze(0)])}
)
def test_multimodal_input_batch_heterogeneous_lists():
a = torch.rand([1, 2, 3])
b = torch.rand([1, 2, 3])
c = torch.rand([1, 2, 3])
result = MultiModalKwargs.batch([{"image": [a, b]}, {"image": [c]}])
assert_multimodal_inputs_equal(
result, {"image": [torch.stack([a, b]), c.unsqueeze(0)]}
)
def test_multimodal_input_batch_multiple_batchable_lists():
a = torch.rand([1, 2, 3])
b = torch.rand([1, 2, 3])
c = torch.rand([1, 2, 3])
d = torch.rand([1, 2, 3])
result = MultiModalKwargs.batch([{"image": [a, b]}, {"image": [c, d]}])
assert_multimodal_inputs_equal(
result, {"image": torch.stack([torch.stack([a, b]), torch.stack([c, d])])}
)
def test_multimodal_input_batch_mixed_stacking_depths():
a = torch.rand([1, 2, 3])
b = torch.rand([1, 3, 3])
c = torch.rand([1, 4, 3])
result = MultiModalKwargs.batch([{"image": [a, b]}, {"image": [c]}])
assert_multimodal_inputs_equal(result, {"image": [[a, b], c.unsqueeze(0)]})
result = MultiModalKwargs.batch([{"image": [a]}, {"image": [b, c]}])
assert_multimodal_inputs_equal(result, {"image": [a.unsqueeze(0), [b, c]]})