mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 12:55:36 +08:00
248 lines
8.0 KiB
Python
248 lines
8.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# A modified implementation of the AIMv2 Transformer
|
|
# inserted here also the image tokenizer used by Ovis2
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.attention.layer import MultiHeadAttention
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.distributed.utils import divide
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.transformers_utils.configs.ovis import AIMv2Config
|
|
|
|
|
|
class AIMv2SwiGLUFFN(nn.Module):
|
|
def __init__(
|
|
self, config: AIMv2Config, quant_config: QuantizationConfig, prefix: str
|
|
):
|
|
super().__init__()
|
|
hidden_features = config.intermediate_size
|
|
in_features = config.hidden_size
|
|
bias = config.use_bias
|
|
|
|
self.fc13 = MergedColumnParallelLinear(
|
|
in_features,
|
|
[hidden_features] * 2,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc13",
|
|
)
|
|
self.fc2 = RowParallelLinear(
|
|
input_size=hidden_features,
|
|
output_size=in_features,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc2",
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, _ = self.fc13(x)
|
|
x = self.act_fn(x)
|
|
x, _ = self.fc2(x)
|
|
return x
|
|
|
|
|
|
class AIMv2PatchEmbed(nn.Module):
|
|
def __init__(self, config: AIMv2Config):
|
|
super().__init__()
|
|
self.proj = nn.Conv2d(
|
|
config.num_channels,
|
|
config.hidden_size,
|
|
kernel_size=(config.patch_size, config.patch_size),
|
|
stride=(config.patch_size, config.patch_size),
|
|
)
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj(x).flatten(2).transpose(1, 2)
|
|
x = self.norm.forward_native(x)
|
|
return x
|
|
|
|
|
|
class AIMv2ViTPreprocessor(nn.Module):
|
|
def __init__(self, config: AIMv2Config):
|
|
super().__init__()
|
|
num_patches = (config.image_size // config.patch_size) ** 2
|
|
|
|
self.patchifier = AIMv2PatchEmbed(config)
|
|
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
tokens = self.patchifier(x)
|
|
_, N, _ = tokens.shape
|
|
pos_embed = self.pos_embed.to(tokens.device)
|
|
tokens = tokens + pos_embed[:, :N]
|
|
return tokens
|
|
|
|
|
|
class AIMv2Attention(nn.Module):
|
|
def __init__(
|
|
self, config: AIMv2Config, quant_config: QuantizationConfig, prefix: str
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
"embed_dim must be divisible by num_heads "
|
|
f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.qkv = QKVParallelLinear(
|
|
hidden_size=self.embed_dim,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.num_heads,
|
|
bias=config.qkv_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv",
|
|
)
|
|
|
|
self.proj = RowParallelLinear(
|
|
input_size=self.embed_dim,
|
|
output_size=self.embed_dim,
|
|
bias=config.use_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.proj",
|
|
)
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
|
|
|
|
self.attn = MultiHeadAttention(
|
|
self.num_heads_per_partition, self.head_dim, self.scale
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
qkv, _ = self.qkv(x)
|
|
q, k, v = qkv.chunk(3, dim=-1)
|
|
|
|
x = self.attn(q, k, v)
|
|
x, _ = self.proj(x)
|
|
return x
|
|
|
|
|
|
class AIMv2Block(nn.Module):
|
|
def __init__(
|
|
self, config: AIMv2Config, quant_config: QuantizationConfig, prefix: str
|
|
):
|
|
super().__init__()
|
|
self.attn = AIMv2Attention(
|
|
config, quant_config=quant_config, prefix=f"{prefix}.attn"
|
|
)
|
|
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.mlp = AIMv2SwiGLUFFN(
|
|
config, quant_config=quant_config, prefix=f"{prefix}.mlp"
|
|
)
|
|
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x + self.attn(self.norm_1.forward_native(x))
|
|
x = x + self.mlp(self.norm_2.forward_native(x))
|
|
return x
|
|
|
|
|
|
class AIMv2Transformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: AIMv2Config,
|
|
quant_config: QuantizationConfig,
|
|
*,
|
|
require_post_norm: bool | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
AIMv2Block(config, quant_config, prefix=f"{prefix}.blocks.{i}")
|
|
for i in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
if require_post_norm:
|
|
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.post_trunk_norm = None
|
|
|
|
def forward(self, tokens: torch.Tensor) -> torch.Tensor:
|
|
# they take the -1 as the ref embeddings, like a clip skip
|
|
for block in self.blocks:
|
|
tokens = block(tokens)
|
|
if self.post_trunk_norm is not None:
|
|
tokens = self.post_trunk_norm(tokens)
|
|
return tokens
|
|
|
|
|
|
class AIMv2Model(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: AIMv2Config,
|
|
quant_config: QuantizationConfig,
|
|
*,
|
|
require_post_norm: bool | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.preprocessor = AIMv2ViTPreprocessor(config)
|
|
self.trunk = AIMv2Transformer(
|
|
config,
|
|
quant_config=quant_config,
|
|
require_post_norm=require_post_norm,
|
|
prefix=f"{prefix}.trunk",
|
|
)
|
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
|
x = self.preprocessor(pixel_values)
|
|
x = self.trunk(x)
|
|
|
|
return x
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".fc13", ".fc1", 0),
|
|
(".fc13", ".fc3", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
|
|
for name, loaded_weight in weights:
|
|
# post_layernorm is optional in SiglipVisionModel
|
|
if (
|
|
name.startswith("trunk.post_trunk_norm")
|
|
and self.trunk.post_trunk_norm is None
|
|
):
|
|
continue
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|