mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 12:55:36 +08:00
631 lines
23 KiB
Python
631 lines
23 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Inference-only Snowflake Arctic model."""
|
|
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import (
|
|
get_pp_group,
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce,
|
|
)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import fused_experts, fused_topk
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.quantization.deepspeedfp import (
|
|
DeepSpeedFPConfig,
|
|
DeepSpeedFPParameter,
|
|
)
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
from vllm.platforms import current_platform
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs.arctic import ArcticConfig
|
|
|
|
from .interfaces import SupportsPP, SupportsQuant
|
|
from .utils import (
|
|
extract_layer_index,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class ArcticMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: ArcticConfig,
|
|
expert_id: int = -1,
|
|
is_residual_mlp: bool = False,
|
|
quant_config: QuantizationConfig | None = None,
|
|
reduce_results: bool = True,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.expert_id = expert_id
|
|
|
|
self.ffn_dim = (
|
|
config.intermediate_size if not is_residual_mlp else self.hidden_size
|
|
)
|
|
|
|
self.w13 = MergedColumnParallelLinear(
|
|
self.hidden_size, [self.ffn_dim] * 2, bias=False, quant_config=quant_config
|
|
)
|
|
self.w2 = RowParallelLinear(
|
|
self.ffn_dim,
|
|
self.hidden_size,
|
|
bias=False,
|
|
reduce_results=reduce_results,
|
|
quant_config=quant_config,
|
|
)
|
|
if config.hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {config.hidden_act}. "
|
|
"Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, hidden_states):
|
|
gate_up, _ = self.w13(hidden_states)
|
|
hidden_states = self.act_fn(gate_up)
|
|
hidden_states, _ = self.w2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class ArcticMoE(nn.Module):
|
|
"""
|
|
Model-parallel implementation of Arctic MoE Layer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: ArcticConfig,
|
|
tp_size: int | None = None,
|
|
params_dtype: torch.dtype | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
reduce_results: bool = True,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
|
|
layer_id = extract_layer_index(prefix)
|
|
self.tp_size = tp_size or get_tensor_model_parallel_world_size()
|
|
self.hidden_size = config.hidden_size
|
|
self.num_experts = config.num_local_experts
|
|
self.layer_id = layer_id
|
|
self.top_k = config.num_experts_per_tok
|
|
self.intermediate_size = config.intermediate_size // self.tp_size
|
|
|
|
self.is_moe_layer = (layer_id + 1) % config.moe_layer_frequency == 0
|
|
self.is_quant = isinstance(quant_config, DeepSpeedFPConfig)
|
|
self.reduce_results = reduce_results
|
|
# Some other parameters
|
|
if params_dtype is None:
|
|
params_dtype = torch.get_default_dtype()
|
|
self.params_dtype = params_dtype
|
|
|
|
if not self.is_moe_layer:
|
|
self.mlp = ArcticMLP(
|
|
config,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
else:
|
|
self.gate = ReplicatedLinear(
|
|
self.hidden_size,
|
|
self.num_experts,
|
|
bias=False,
|
|
params_dtype=self.params_dtype,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
if self.is_quant:
|
|
self.ws = DeepSpeedFPParameter(
|
|
torch.Size(
|
|
(self.num_experts, 2 * self.intermediate_size, self.hidden_size)
|
|
),
|
|
params_dtype=params_dtype,
|
|
quant_config=quant_config,
|
|
)
|
|
self.w2s = DeepSpeedFPParameter(
|
|
torch.Size(
|
|
(self.num_experts, self.hidden_size, self.intermediate_size)
|
|
),
|
|
params_dtype=params_dtype,
|
|
quant_config=quant_config,
|
|
)
|
|
else:
|
|
self.ws = nn.Parameter(
|
|
torch.empty(
|
|
self.num_experts,
|
|
2 * self.intermediate_size,
|
|
self.hidden_size,
|
|
device=current_platform.device_type,
|
|
dtype=self.params_dtype,
|
|
)
|
|
)
|
|
self.w2s = nn.Parameter(
|
|
torch.empty(
|
|
self.num_experts,
|
|
self.hidden_size,
|
|
self.intermediate_size,
|
|
device=current_platform.device_type,
|
|
dtype=self.params_dtype,
|
|
)
|
|
)
|
|
set_weight_attrs(
|
|
self.ws,
|
|
{
|
|
"weight_loader": self.weight_loader,
|
|
},
|
|
)
|
|
set_weight_attrs(
|
|
self.w2s,
|
|
{
|
|
"weight_loader": self.weight_loader,
|
|
},
|
|
)
|
|
|
|
def weight_loader(
|
|
self,
|
|
param: nn.Parameter,
|
|
loaded_weight: torch.Tensor,
|
|
weight_name: str,
|
|
expert_id: int,
|
|
):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
param_data = param.ds_dequantize() if self.is_quant else param.data
|
|
shard_size = self.intermediate_size
|
|
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
|
|
if weight_name.endswith("w1.weight"):
|
|
param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :]
|
|
if weight_name.endswith("w3.weight"):
|
|
param_data[expert_id, shard_size : 2 * shard_size, :] = loaded_weight[
|
|
shard, :
|
|
]
|
|
if weight_name.endswith("w2.weight"):
|
|
param_data[expert_id, :, :] = loaded_weight[:, shard]
|
|
if self.is_quant:
|
|
param.ds_quantize_(param_data)
|
|
|
|
def local_moe_fused(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_size = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, self.hidden_size)
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states)
|
|
do_normalize = self.top_k > 1
|
|
topk_weights, topk_ids, token_expert_indices = fused_topk(
|
|
hidden_states, router_logits, self.top_k, renormalize=do_normalize
|
|
)
|
|
# topk_ids: (num_tokens, k)
|
|
if self.is_quant:
|
|
if 2 * num_tokens <= self.num_experts:
|
|
# If much fewer tokens than experts, use selective dequantize.
|
|
ws_dequantized = self.ws.ds_selective_dequantize(topk_ids.flatten())
|
|
w2s_dequantized = self.w2s.ds_selective_dequantize(topk_ids.flatten())
|
|
# We gathered the experts to the tokens so update the mapping.
|
|
topk_ids = torch.arange(
|
|
0,
|
|
topk_ids.numel(),
|
|
device=topk_ids.device,
|
|
).reshape(topk_ids.shape)
|
|
else:
|
|
ws_dequantized = self.ws.ds_dequantize()
|
|
w2s_dequantized = self.w2s.ds_dequantize()
|
|
|
|
final_hidden_states = fused_experts(
|
|
hidden_states,
|
|
ws_dequantized if self.is_quant else self.ws,
|
|
w2s_dequantized if self.is_quant else self.w2s,
|
|
topk_weights,
|
|
topk_ids,
|
|
inplace=True,
|
|
)
|
|
if self.reduce_results and self.tp_size > 1:
|
|
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
|
|
return final_hidden_states.view(num_tokens, hidden_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor):
|
|
if self.is_moe_layer:
|
|
final_hidden_states = self.local_moe_fused(hidden_states)
|
|
else:
|
|
final_hidden_states = self.mlp(hidden_states)
|
|
return final_hidden_states
|
|
|
|
|
|
class ArcticAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: ArcticConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = config.num_attention_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = config.num_key_value_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.rope_theta = config.rope_theta
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
self.hidden_size,
|
|
bias=False,
|
|
reduce_results=True,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
base=int(self.rope_theta),
|
|
is_neox_style=True,
|
|
)
|
|
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class ArcticDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: ArcticConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
layer_idx = extract_layer_index(prefix)
|
|
is_moe_layer = (layer_idx + 1) % config.moe_layer_frequency == 0
|
|
self.use_residual = config.use_residual and is_moe_layer
|
|
self.self_attn = ArcticAttention(
|
|
config,
|
|
cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
self.block_sparse_moe = ArcticMoE(
|
|
config,
|
|
quant_config=quant_config,
|
|
reduce_results=(not self.use_residual),
|
|
prefix=f"{prefix}.block_sparse_moe",
|
|
)
|
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
if self.use_residual:
|
|
self.residual_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
self.residual_mlp = ArcticMLP(
|
|
config,
|
|
is_residual_mlp=True,
|
|
reduce_results=False,
|
|
prefix=f"{prefix}.residual_mlp",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
residual_input = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
hidden_states = residual_input + hidden_states
|
|
|
|
residual_attn = hidden_states
|
|
if self.use_residual:
|
|
hidden_states = self.residual_layernorm(hidden_states)
|
|
hidden_states = self.residual_mlp(hidden_states)
|
|
residual_mlp = hidden_states
|
|
hidden_states = self.post_attention_layernorm(residual_input)
|
|
hidden_states = self.block_sparse_moe(hidden_states)
|
|
hidden_states = residual_mlp + hidden_states
|
|
hidden_states = tensor_model_parallel_all_reduce(hidden_states)
|
|
hidden_states = residual_attn + hidden_states
|
|
else:
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.block_sparse_moe(hidden_states)
|
|
hidden_states = residual_attn + hidden_states
|
|
return hidden_states
|
|
|
|
|
|
@support_torch_compile
|
|
class ArcticModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size, config.hidden_size, org_num_embeddings=self.vocab_size
|
|
)
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: ArcticDecoderLayer(
|
|
config, cache_config, quant_config, prefix=prefix
|
|
),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
self._attn_implementation = config._attn_implementation
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states"], config.hidden_size
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
hidden_states = layer(positions, hidden_states)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
hidden_states = self.norm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class ArcticForCausalLM(nn.Module, SupportsPP, SupportsQuant):
|
|
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.model = ArcticModel(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = ParallelLMHead(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head.weight = self.model.embed_tokens.weight
|
|
self.num_experts = config.num_local_experts
|
|
self.num_experts_per_tok = config.num_experts_per_tok
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
self.logits_processor = LogitsProcessor(
|
|
self.unpadded_vocab_size, config.vocab_size
|
|
)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
|
|
mlp_params_mapping: list[tuple[str, str, int]] = []
|
|
expert_params_mapping: list[tuple[str, str, int]] = []
|
|
num_layers = self.config.num_hidden_layers
|
|
|
|
for layer in range(num_layers):
|
|
mlp_params_mapping.append(
|
|
(
|
|
f"layers.{layer}.residual_mlp.w13.weight",
|
|
f"layers.{layer}.residual_mlp.w1.weight",
|
|
0,
|
|
)
|
|
)
|
|
mlp_params_mapping.append(
|
|
(
|
|
f"layers.{layer}.residual_mlp.w13.weight",
|
|
f"layers.{layer}.residual_mlp.w3.weight",
|
|
1,
|
|
)
|
|
)
|
|
if layer % 2 == 0:
|
|
# MLP layers
|
|
mlp_params_mapping.append(
|
|
(
|
|
f"layers.{layer}.block_sparse_moe.mlp.w13.weight",
|
|
f"layers.{layer}.block_sparse_moe.mlp.w1.weight",
|
|
0,
|
|
)
|
|
)
|
|
mlp_params_mapping.append(
|
|
(
|
|
f"layers.{layer}.block_sparse_moe.mlp.w13.weight",
|
|
f"layers.{layer}.block_sparse_moe.mlp.w3.weight",
|
|
1,
|
|
)
|
|
)
|
|
else:
|
|
# MoE layers
|
|
for expert_id in range(self.config.num_local_experts):
|
|
expert_params_mapping.append(
|
|
("ws", f"experts.{expert_id}.w1.weight", expert_id)
|
|
)
|
|
expert_params_mapping.append(
|
|
("w2s", f"experts.{expert_id}.w2.weight", expert_id)
|
|
)
|
|
expert_params_mapping.append(
|
|
("ws", f"experts.{expert_id}.w3.weight", expert_id)
|
|
)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
|
|
logger.info(
|
|
"It will take ~10 minutes loading from the 16-bit weights. "
|
|
"Alternatively, use the prequantized 8-bit weights of arctic "
|
|
"and set load-format to `sharded_state` will accelerate loading."
|
|
)
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for param_name, weight_name, shard_id in mlp_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for param_name, weight_name, shard_id in expert_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param, loaded_weight, weight_name, expert_id=shard_id
|
|
)
|
|
break
|
|
else:
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|