Cyrus Leung d2f816d6ff
[Bugfix] Standardize merging multimodal embeddings (#26771)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-14 09:36:21 +00:00

828 lines
30 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# --------------------------------------------------------
# InternS1
# Copyright (c) 2025 Shanghai AI Lab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from collections.abc import Iterable, Mapping, Sequence
from typing import Annotated, Literal, TypeAlias
import regex as re
import torch
import torch.nn as nn
from transformers import BatchFeature, InternVLProcessor, PretrainedConfig
from transformers.activations import ACT2FN
from transformers.models.got_ocr2.image_processing_got_ocr2_fast import (
GotOcr2ImageProcessorFast,
)
from transformers.models.internvl.video_processing_internvl import (
InternVLVideoProcessor,
)
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.models.interns1_vit import InternS1VisionModel
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalKwargsItems,
)
from vllm.multimodal.parse import (
ImageEmbeddingItems,
ImageProcessorItems,
ImageSize,
MultiModalDataItems,
)
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
PromptReplacement,
PromptUpdate,
PromptUpdateDetails,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.processor import cached_video_processor_from_config
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import (
MultiModalEmbeddings,
SupportsLoRA,
SupportsMultiModal,
SupportsPP,
)
from .utils import (
AutoWeightsLoader,
WeightsMapper,
init_vllm_registered_model,
maybe_prefix,
)
class InternS1MultiModalProjector(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(
config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2
)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2,
config.text_config.hidden_size,
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(
config.text_config.hidden_size, config.text_config.hidden_size
)
def forward(self, image_features):
hidden_states = self.layer_norm(image_features)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class InternS1ImagePixelInputs(TensorSchema):
"""
Dimensions:
- bnp: Batch size * number of images * (1 + num_patches)
- c: Number of channels (3)
- h: Height
- w: Width
- bn: Batch size * number of images
"""
type: Literal["pixel_values"] = "pixel_values"
pixel_values: Annotated[torch.Tensor, TensorShape("bnp", 3, "h", "w")]
num_patches: Annotated[torch.Tensor, TensorShape("bn")]
class InternS1ImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- ni: Number of images
- tifs: Total image feature size
- hs: Hidden size (must match language model backbone)
"""
type: Literal["image_embeds"] = "image_embeds"
data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("ni", "tifs", "hs")]
InternS1ImageInputs: TypeAlias = InternS1ImagePixelInputs | InternS1ImageEmbeddingInputs
class InternS1VideoPixelInputs(TensorSchema):
"""
Dimensions:
- bnv: Batch size * number of videos * number of frames
- bn: Batch size * number of images
- c: Number of channels (3)
- h: Height
- w: Width
"""
type: Literal["pixel_values_videos"] = "pixel_values_videos"
pixel_values: Annotated[torch.Tensor, TensorShape("bnv", 3, "h", "w")]
num_patches: Annotated[torch.Tensor, TensorShape("bn")]
class InternS1VideoEmbeddingInputs(TensorSchema):
"""
Dimensions:
- nv: Number of videos
- tvfs: Total video feature size
- hs: Hidden size (must match language model backbone)
"""
type: Literal["video_embeds"] = "video_embeds"
data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("nv", "tvfs", "hs")]
InternS1VideoInputs: TypeAlias = InternS1VideoPixelInputs | InternS1VideoEmbeddingInputs
def resolve_interns1_min_max_num(
min_dynamic_patch: int,
max_dynamic_patch: int,
dynamic_image_size: bool,
use_thumbnail: bool,
) -> tuple[int, int]:
min_dynamic_patch = min_dynamic_patch if dynamic_image_size else 1
max_dynamic_patch = max_dynamic_patch if dynamic_image_size else 1
if use_thumbnail and max_dynamic_patch != 1:
max_dynamic_patch += 1
return min_dynamic_patch, max_dynamic_patch
def get_interns1_target_ratios(
min_num: int,
max_num: int,
) -> list[tuple[int, int]]:
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if min_num <= i * j <= max_num
}
return sorted(target_ratios, key=lambda x: x[0] * x[1])
class InternS1ProcessingInfo(BaseProcessingInfo):
"""ProcessingInfo for InternS1-style models."""
def get_hf_processor(self, **kwargs: object) -> InternVLProcessor:
hf_processor = self.ctx.get_hf_processor(InternVLProcessor, **kwargs)
hf_processor.video_processor = cached_video_processor_from_config(
self.ctx.model_config, processor_cls=InternVLVideoProcessor, **kwargs
)
return hf_processor
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": None, "video": None}
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
processor: GotOcr2ImageProcessorFast | None = None,
) -> int:
if processor is None:
processor = self.get_hf_processor().image_processor
if not isinstance(processor, GotOcr2ImageProcessorFast):
raise ValueError(
f"GotOcr2ImageProcessorFast is expected but got {type(processor)}"
)
num_image_patches = processor.get_number_of_image_patches(
image_height, image_width, images_kwargs=dict()
)
num_image_tokens = self.get_hf_processor().image_seq_length * num_image_patches
return num_image_tokens
def resolve_target_ratios(self, use_thumbnail: bool | None = None):
image_processor = self.get_hf_processor().image_processor
min_dynamic_patch = image_processor.min_patches
max_dynamic_patch = image_processor.max_patches
# HF format's InternVL processor uses `crop_to_patches` which is
# equivalent to `use_thumbnail` in original format.
use_thumbnail = image_processor.crop_to_patches
dynamic_image_size = True
min_num, max_num = resolve_interns1_min_max_num(
min_dynamic_patch,
max_dynamic_patch,
dynamic_image_size,
use_thumbnail=use_thumbnail,
)
return get_interns1_target_ratios(min_num, max_num)
def get_image_size_with_most_features(self) -> ImageSize:
processor = self.get_hf_processor()
hf_config = self.ctx.get_hf_config()
base_height, base_width = hf_config.vision_config.image_size
target_ratios = self.resolve_target_ratios()
largest_feature_size, largest_feature_pinpoint = 0, None
for wr, hr in target_ratios:
width, height = base_width * wr, base_height * hr
feat_size = self.get_num_image_tokens(
image_width=width,
image_height=height,
processor=processor.image_processor,
)
if feat_size > largest_feature_size:
largest_feature_size = feat_size
largest_feature_pinpoint = ImageSize(width=width, height=height)
assert not (largest_feature_size == 0 or largest_feature_pinpoint is None), (
"Cannot have a largest feature size of 0!"
)
return largest_feature_pinpoint
def get_max_image_tokens(self) -> int:
processor = self.get_hf_processor()
target_width, target_height = self.get_image_size_with_most_features()
return self.get_num_image_tokens(
image_width=target_width,
image_height=target_height,
processor=processor.image_processor,
)
def get_num_frames_with_most_features(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> int:
max_images = mm_counts.get("image", 0)
max_videos = mm_counts.get("video", 0)
processor = self.get_hf_processor()
max_image_tokens = self.get_max_image_tokens() * max_images
max_total_frames = (seq_len - max_image_tokens) // processor.image_seq_length
max_frames_per_video = max_total_frames // max(max_videos, 1)
return max(max_frames_per_video, 1)
class InternS1DummyInputsBuilder(BaseDummyInputsBuilder[InternS1ProcessingInfo]):
"""DummyInputsBuilder for InternS1-style models."""
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
image_token = self.info.get_hf_processor().image_token
video_token = self.info.get_hf_processor().video_token
return image_token * num_images + video_token * num_videos
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
target_width, target_height = self.info.get_image_size_with_most_features()
target_num_frames = self.info.get_num_frames_with_most_features(
seq_len, mm_counts
)
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
config = self.info.get_hf_config()
image_size_h, image_size_w = config.vision_config.image_size
image_overrides = mm_options.get("image") if mm_options else None
video_overrides = mm_options.get("video") if mm_options else None
return {
"image": self._get_dummy_images(
width=target_width,
height=target_height,
num_images=num_images,
overrides=image_overrides,
),
"video": self._get_dummy_videos(
width=image_size_w,
height=image_size_h,
num_frames=target_num_frames,
num_videos=num_videos,
overrides=video_overrides,
),
}
class InternS1MultiModalProcessor(BaseMultiModalProcessor[InternS1ProcessingInfo]):
"""Basic image-only MultiModalProcessor for InternS1-style models."""
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
mm_data = dict(mm_data)
videos = mm_data.pop("videos", [])
images = mm_data.pop("images", [])
assert isinstance(videos, list)
assert isinstance(images, list)
hf_processor = self.info.get_hf_processor(**mm_kwargs)
tokenizer = hf_processor.tokenizer
video_token_id = tokenizer.encode(
hf_processor.video_token, add_special_tokens=False
)
assert len(video_token_id) == 1
video_token_id = video_token_id[0]
prompt = re.sub(hf_processor.image_token, "<image_placeholder>", prompt)
prompt = re.sub(hf_processor.video_token, "<video_placeholder>", prompt)
image_outputs = {}
if images:
image_pixel_values = []
for image in images:
processed_outputs = super()._call_hf_processor(
prompt=hf_processor.image_token,
mm_data={"images": image},
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
image_pixel_values.append(processed_outputs.pop("pixel_values"))
input_ids = processed_outputs.pop("input_ids")
image_placeholder = tokenizer.batch_decode(input_ids)[0]
prompt = prompt.replace("<image_placeholder>", image_placeholder, 1)
num_patches = [len(item) for item in image_pixel_values]
image_outputs = {
"pixel_values": torch.concat(image_pixel_values),
"image_num_patches": torch.tensor(num_patches),
"image_token_id": torch.tensor(hf_processor.image_token_id),
}
video_outputs = {}
if videos:
video_pixel_values = []
for video in videos:
processed_outputs = super()._call_hf_processor(
prompt=hf_processor.video_token,
mm_data={"videos": video},
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
video_pixel_values.append(processed_outputs.pop("pixel_values"))
input_ids = processed_outputs.pop("input_ids")
input_ids[input_ids == hf_processor.image_token_id] = video_token_id
video_placeholder = tokenizer.batch_decode(input_ids)[0]
prompt = prompt.replace("<video_placeholder>", video_placeholder, 1)
num_frames = [len(item) for item in video_pixel_values]
video_outputs = {
"pixel_values_videos": torch.concat(video_pixel_values),
"video_num_patches": torch.tensor(num_frames),
"video_token_id": torch.tensor(video_token_id),
}
prompt = re.sub("<image_placeholder>", hf_processor.image_token, prompt)
prompt = re.sub("<video_placeholder>", hf_processor.video_token, prompt)
text_outputs = tokenizer(prompt, **tok_kwargs, return_tensors="pt")
return BatchFeature({**text_outputs, **image_outputs, **video_outputs})
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
image_num_patches = hf_inputs.get("image_num_patches", torch.empty(0))
video_num_patches = hf_inputs.get("video_num_patches", torch.empty(0))
num_images = len(image_num_patches)
num_videos = len(video_num_patches)
return dict(
pixel_values=MultiModalFieldConfig.flat_from_sizes(
"image", image_num_patches
),
image_num_patches=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
image_token_id=MultiModalFieldConfig.shared("image", num_images),
pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
"video", video_num_patches
),
video_num_patches=MultiModalFieldConfig.batched("video"),
video_token_id=MultiModalFieldConfig.shared("video", num_videos),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
img_context_token = hf_processor.image_token
start_image_token = hf_processor.start_image_token
end_image_token = hf_processor.end_image_token
video_token = hf_processor.video_token
out_mm_data = out_mm_kwargs.get_data()
if "video_num_patches" in out_mm_data:
video_num_patches = out_mm_data["video_num_patches"]
assert isinstance(video_num_patches, torch.Tensor)
video_num_patches = video_num_patches.tolist()
else:
video_num_patches = []
if "image_num_patches" in out_mm_data:
image_num_patches = out_mm_data["image_num_patches"]
assert isinstance(image_num_patches, torch.Tensor)
image_num_patches = image_num_patches.tolist()
else:
image_num_patches = []
def get_replacement_interns1_image(item_idx: int):
images = mm_items.get_items(
"image", (ImageEmbeddingItems, ImageProcessorItems)
)
if isinstance(images, ImageEmbeddingItems):
feature_size = images.get_feature_size(item_idx)
else:
num_patches = image_num_patches[item_idx]
feature_size = num_patches * hf_processor.image_seq_length
repl_features = img_context_token * feature_size
repl_full = start_image_token + repl_features + end_image_token
return PromptUpdateDetails.select_text(repl_full, img_context_token)
def get_replacement_interns1_video(item_idx: int):
num_patches = video_num_patches[item_idx]
repl_features = video_token * hf_processor.image_seq_length
repl_features_with_sep = start_image_token + repl_features + end_image_token
# num_patches is equal to num_frames
repl_full = "\n".join(
[f"Frame{i + 1}: {repl_features_with_sep}" for i in range(num_patches)]
)
return PromptUpdateDetails.select_text(repl_full, video_token)
return [
PromptReplacement(
modality="image",
target=img_context_token,
replacement=get_replacement_interns1_image,
),
PromptReplacement(
modality="video",
target=video_token,
replacement=get_replacement_interns1_video,
),
]
@MULTIMODAL_REGISTRY.register_processor(
InternS1MultiModalProcessor,
info=InternS1ProcessingInfo,
dummy_inputs=InternS1DummyInputsBuilder,
)
class InternS1ForConditionalGeneration(
nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA
):
merge_by_field_config = True
# To ensure correct weight loading and mapping.
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"lm_head.": "language_model.lm_head.",
"model.language_model.": "language_model.model.",
"model.vision_tower.": "vision_tower.",
"model.multi_modal_projector.": "multi_modal_projector.",
}
)
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
# transformers InternVLProcessor uses <IMG_CONTEXT> as the separator
# refer to https://github.com/huggingface/transformers/blob/f90de364c2484c7c325bbe05befdcf487bd75b63/src/transformers/models/internvl/processing_internvl.py#L116
if modality.startswith("image"):
return "<IMG_CONTEXT>"
if modality.startswith("video"):
return "<video>"
raise ValueError("Only image or video modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
image_size = config.vision_config.image_size[0]
patch_size = config.vision_config.patch_size[0]
self.patch_size = patch_size
self.num_image_token = int(
(image_size // patch_size) ** 2 * (config.downsample_ratio**2)
)
self.downsample_ratio = config.downsample_ratio
self.llm_arch_name = config.text_config.architectures[0]
self.vision_tower = self._init_vision_model(
config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "vision_tower"),
)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
self.multi_modal_projector = self._init_mlp1(config)
self.img_context_token_id = None
self.video_context_token_id = None
self.visual_token_mask = None
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors
)
def _init_vision_model(
self,
config: PretrainedConfig,
quant_config: QuantizationConfig | None,
*,
prefix: str,
):
num_hidden_layers = config.vision_config.num_hidden_layers
return InternS1VisionModel(
config.vision_config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers,
prefix=prefix,
)
def _init_mlp1(self, config: PretrainedConfig) -> nn.Module:
return InternS1MultiModalProjector(config)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(
n,
int(h * scale_factor),
int(w * scale_factor),
int(c / (scale_factor * scale_factor)),
)
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor:
vit_embeds = self.vision_tower(pixel_values=pixel_values)
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.multi_modal_projector(vit_embeds)
return vit_embeds
def _parse_and_validate_image_input(
self, **kwargs: object
) -> InternS1ImageInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
image_num_patches = kwargs.pop("image_num_patches", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if image_embeds is not None:
return InternS1ImageEmbeddingInputs(
type="image_embeds",
data=image_embeds,
)
image_token_id = kwargs["image_token_id"]
if isinstance(image_token_id, torch.Tensor):
image_token_id = image_token_id.flatten().unique().item()
assert isinstance(image_token_id, int)
self.img_context_token_id = image_token_id
if pixel_values is not None:
h, w = self.config.vision_config.image_size
return InternS1ImagePixelInputs(
type="pixel_values",
pixel_values=pixel_values,
num_patches=image_num_patches,
resolve_bindings={
"h": h,
"w": w,
},
)
raise AssertionError("This line should be unreachable.")
def _parse_and_validate_video_input(
self, **kwargs: object
) -> InternS1VideoInputs | None:
pixel_values_flat_video = kwargs.pop("pixel_values_videos", None)
video_num_patches = kwargs.pop("video_num_patches", None)
video_embeds = kwargs.pop("video_embeds", None)
if pixel_values_flat_video is None and video_embeds is None:
return None
if video_embeds is not None:
return InternS1VideoEmbeddingInputs(
type="video_embeds",
data=video_embeds,
)
video_token_id = kwargs["video_token_id"]
if isinstance(video_token_id, torch.Tensor):
video_token_id = video_token_id.flatten().unique().item()
assert isinstance(video_token_id, int)
self.video_context_token_id = video_token_id
if pixel_values_flat_video is not None:
h, w = self.config.vision_config.image_size
return InternS1VideoPixelInputs(
type="pixel_values_videos",
num_patches=video_num_patches,
pixel_values=pixel_values_flat_video,
resolve_bindings={
"h": h,
"w": w,
},
)
raise AssertionError("This line should be unreachable.")
def _process_vision_input(
self,
image_input: InternS1ImageInputs | InternS1VideoInputs,
) -> tuple[torch.Tensor, ...]:
if (
image_input["type"] == "image_embeds"
or image_input["type"] == "video_embeds"
):
return image_input["data"]
assert self.vision_tower is not None
image_embeds = self.extract_feature(image_input["pixel_values"])
num_patches = image_input["num_patches"]
# Only one image in the current batch
if len(num_patches) == 1:
return (image_embeds.view(-1, self.config.text_config.hidden_size),)
# NOTE: Image embeddings are split into separate tensors for each image
# by the size of each embedding.
feature_size = image_embeds.shape[1]
image_embeds = image_embeds.view(-1, self.config.text_config.hidden_size)
image_feature_sizes = [
num_patches * feature_size for num_patches in num_patches
]
return image_embeds.split(image_feature_sizes)
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
modalities = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if (
input_key in ("pixel_values", "image_embeds")
and "images" not in modalities
):
modalities["images"] = self._parse_and_validate_image_input(**kwargs)
if input_key in ("pixel_values_videos",) and "videos" not in modalities:
modalities["videos"] = self._parse_and_validate_video_input(**kwargs)
return modalities
def _set_visual_token_mask(self, input_ids: torch.Tensor) -> None:
self.visual_token_mask = None
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
if not modalities:
return []
# The result multimodal_embeddings is tuple of tensors, with each
# tensor corresponding to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in modalities:
if modality == "images":
image_input = modalities["images"]
image_embeddings = self._process_vision_input(image_input)
multimodal_embeddings += tuple(image_embeddings)
if modality == "videos":
video_input = modalities["videos"]
video_embeddings = self._process_vision_input(video_input)
multimodal_embeddings += tuple(video_embeddings)
return multimodal_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: MultiModalEmbeddings | None = None,
*,
is_multimodal: torch.Tensor | None = None,
handle_oov_mm_token: bool = False,
) -> torch.Tensor:
if multimodal_embeddings is not None and len(multimodal_embeddings) > 0:
self._set_visual_token_mask(input_ids)
# This is to satisfy the type checker for each overload
if multimodal_embeddings is None or is_multimodal is None:
return super().get_input_embeddings(input_ids)
return super().get_input_embeddings(
input_ids,
multimodal_embeddings=multimodal_embeddings,
is_multimodal=is_multimodal,
handle_oov_mm_token=handle_oov_mm_token,
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> IntermediateTensors:
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
forward_kwargs = {
"input_ids": input_ids,
"positions": positions,
"intermediate_tensors": intermediate_tensors,
"inputs_embeds": inputs_embeds,
}
hidden_states = self.language_model.model(**forward_kwargs)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="multi_modal_projector",
tower_model="vision_tower",
)