vllm/tests/lora/test_llama_tp.py
Jee Jee Li 9875be6431
[LoRA][2/2]Remove LoRA extra vocab (#28545)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-11-21 09:46:43 +08:00

232 lines
6.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import subprocess
import sys
import pytest
import vllm
import vllm.config
from vllm import LLM
from vllm.lora.request import LoRARequest
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
from ..utils import VLLM_PATH, create_new_process_for_each_test, multi_gpu_test
PROMPT_TEMPLATE = """<|eot_id|><|start_header_id|>user<|end_header_id|>
I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.
"
##Instruction:
candidate_poll contains tables such as candidate, people. Table candidate has columns such as Candidate_ID, People_ID, Poll_Source, Date, Support_rate, Consider_rate, Oppose_rate, Unsure_rate. Candidate_ID is the primary key.
Table people has columns such as People_ID, Sex, Name, Date_of_Birth, Height, Weight. People_ID is the primary key.
The People_ID of candidate is the foreign key of People_ID of people.
###Input:
{context}
###Response:<|eot_id|><|start_header_id|>assistant<|end_header_id|>
""" # noqa: E501
EXPECTED_LORA_OUTPUT = [
"SELECT count(*) FROM candidate",
"SELECT count(*) FROM candidate",
"SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
"SELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
]
MODEL_PATH = "meta-llama/Llama-3.2-3B-Instruct"
def do_sample(
llm: vllm.LLM,
lora_path: str,
lora_id: int,
tensorizer_config_dict: dict | None = None,
) -> list[str]:
prompts = [
PROMPT_TEMPLATE.format(context="How many candidates are there?"),
PROMPT_TEMPLATE.format(context="Count the number of candidates."),
PROMPT_TEMPLATE.format(
context="Which poll resource provided the most number of candidate information?" # noqa: E501
),
PROMPT_TEMPLATE.format(
context="Return the poll resource associated with the most candidates."
),
]
sampling_params = vllm.SamplingParams(
temperature=0, max_tokens=64, stop=["<|im_end|>"]
)
if tensorizer_config_dict is not None:
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(
str(lora_id),
lora_id,
lora_path,
tensorizer_config_dict=tensorizer_config_dict,
)
if lora_id
else None,
)
else:
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id
else None,
)
# Print the outputs.
generated_texts: list[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
def generate_and_test(
llm, llama32_lora_files, tensorizer_config_dict: dict | None = None
):
print("lora adapter created")
print("lora 1")
assert (
do_sample(
llm,
llama32_lora_files,
tensorizer_config_dict=tensorizer_config_dict,
lora_id=1,
)
== EXPECTED_LORA_OUTPUT
)
print("lora 2")
assert (
do_sample(
llm,
llama32_lora_files,
tensorizer_config_dict=tensorizer_config_dict,
lora_id=2,
)
== EXPECTED_LORA_OUTPUT
)
print("removing lora")
@create_new_process_for_each_test()
@pytest.mark.parametrize("cudagraph_specialize_lora", [True, False])
def test_llama_lora(llama32_lora_files, cudagraph_specialize_lora: bool):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
# also test odd max_num_seqs
max_num_seqs=7,
max_model_len=1024,
max_loras=4,
compilation_config=vllm.config.CompilationConfig(
cudagraph_specialize_lora=cudagraph_specialize_lora,
),
)
generate_and_test(llm, llama32_lora_files)
@multi_gpu_test(num_gpus=4)
def test_llama_lora_tp4(llama32_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=7,
max_model_len=1024,
max_loras=4,
tensor_parallel_size=4,
)
generate_and_test(llm, llama32_lora_files)
@multi_gpu_test(num_gpus=4)
def test_llama_lora_tp4_fully_sharded_loras(llama32_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=8,
max_loras=4,
max_model_len=1024,
tensor_parallel_size=4,
fully_sharded_loras=True,
)
generate_and_test(llm, llama32_lora_files)
@multi_gpu_test(num_gpus=2)
def test_tp2_serialize_and_deserialize_lora(
tmp_path,
llama32_lora_files,
):
# Run the tensorizing of the LoRA adapter and the model in a subprocess
# to guarantee cleanup
tp_size = 2
model_name = "model-rank-%03d.tensors"
model_ref = MODEL_PATH
lora_path = llama32_lora_files
suffix = "test"
try:
result = subprocess.run(
[
sys.executable,
f"{VLLM_PATH}/examples/others/tensorize_vllm_model.py",
"--model",
MODEL_PATH,
"--lora-path",
lora_path,
"--tensor-parallel-size",
str(tp_size),
"serialize",
"--serialized-directory",
str(tmp_path),
"--suffix",
suffix,
"--serialization-kwargs",
'{"limit_cpu_concurrency": 4}',
],
check=True,
capture_output=True,
text=True,
)
except subprocess.CalledProcessError as e:
print("Tensorizing failed.")
print("STDOUT:\n", e.stdout)
print("STDERR:\n", e.stderr)
raise
print("STDOUT:\n", result.stdout)
model_uri = tmp_path / "vllm" / model_ref / suffix / model_name
tensorizer_config = TensorizerConfig(tensorizer_uri=str(model_uri))
loaded_llm = LLM(
model=model_ref,
load_format="tensorizer",
enable_lora=True,
enforce_eager=True,
model_loader_extra_config=tensorizer_config,
max_num_seqs=7,
max_model_len=1024,
tensor_parallel_size=2,
max_loras=2,
)
tc_as_dict = tensorizer_config.to_serializable()
print("lora adapter created")
print("lora 1")
assert (
do_sample(
loaded_llm, llama32_lora_files, tensorizer_config_dict=tc_as_dict, lora_id=1
)
== EXPECTED_LORA_OUTPUT
)