mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 01:25:01 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
328 lines
12 KiB
Python
328 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Compare the outputs of HF and vLLM when using greedy sampling for Mamba.
|
|
|
|
Run `pytest tests/models/test_mamba.py`.
|
|
"""
|
|
import pytest
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.sampling_params import SamplingParams
|
|
|
|
from ...utils import check_outputs_equal
|
|
|
|
MODELS = ["state-spaces/mamba-130m-hf", "tiiuae/falcon-mamba-tiny-dev"]
|
|
|
|
|
|
# Use lower-level interfaces to create this greedy generator, as mamba will
|
|
# choke on the model_kwarg 'attention_mask' if hf_model.generate_greedy is used.
|
|
def generate_greedy(model_name, example_prompts, max_tokens):
|
|
# Create a text generation pipeline
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
# Generate texts from the prompts
|
|
outputs = []
|
|
for prompt in example_prompts:
|
|
# Tokenize the input prompt with truncation
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
|
input_ids = inputs["input_ids"].to(model.device)
|
|
|
|
# Generate text using the model's generate method directly
|
|
generated_ids = model.generate(input_ids, max_new_tokens=max_tokens)
|
|
generated_text = tokenizer.decode(generated_ids[0],
|
|
skip_special_tokens=True)
|
|
|
|
outputs.append((generated_ids[0].tolist(), generated_text))
|
|
|
|
return outputs
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [96])
|
|
def test_models(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
hf_outputs = generate_greedy(model, example_prompts, max_tokens)
|
|
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
# This test is for verifying whether the model's extra_repr
|
|
# can be printed correctly.
|
|
def print_model(model):
|
|
print(model)
|
|
|
|
vllm_model.apply_model(print_model)
|
|
|
|
for i in range(len(example_prompts)):
|
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
|
vllm_output_ids, vllm_output_str = vllm_outputs[i]
|
|
assert hf_output_str == vllm_output_str, (
|
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
|
assert hf_output_ids == vllm_output_ids, (
|
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [96])
|
|
def test_batching(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
# To pass the small model tests, we need full precision.
|
|
for_loop_outputs = []
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
for prompt in example_prompts:
|
|
for_loop_outputs.append(
|
|
vllm_model.generate_greedy([prompt], max_tokens)[0])
|
|
|
|
batched_outputs = vllm_model.generate_greedy(example_prompts,
|
|
max_tokens)
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=for_loop_outputs,
|
|
outputs_1_lst=batched_outputs,
|
|
name_0="for_loop_vllm",
|
|
name_1="batched_vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [10])
|
|
def test_chunked_prefill_with_parallel_sampling(vllm_runner, example_prompts,
|
|
model: str, dtype: str,
|
|
max_tokens: int) -> None:
|
|
# Tests chunked prefill in conjunction with n>1. In this case, prefill is
|
|
# populated with decoding tokens and we test that it doesn't fail.
|
|
# This test might fail if cache is not allocated correctly for n > 1
|
|
# decoding steps inside a chunked prefill forward pass (where we have both
|
|
# prefill and decode together )
|
|
sampling_params = SamplingParams(n=3,
|
|
temperature=1,
|
|
seed=0,
|
|
max_tokens=max_tokens)
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
enable_chunked_prefill=True,
|
|
max_num_batched_tokens=30,
|
|
max_num_seqs=10 # forces prefill chunks with decoding
|
|
) as vllm_model:
|
|
vllm_model.generate(example_prompts, sampling_params)
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
|
|
def test_chunked_prefill(vllm_runner, example_prompts, model: str, dtype: str,
|
|
max_tokens: int,
|
|
chunked_prefill_token_size: int) -> None:
|
|
"""
|
|
Checks exact match decode between huggingface model and vllm runner with
|
|
chunked prefill.
|
|
"""
|
|
max_num_seqs = chunked_prefill_token_size
|
|
max_num_batched_tokens = chunked_prefill_token_size
|
|
|
|
non_chunked = generate_greedy(model, example_prompts, max_tokens)
|
|
|
|
with vllm_runner(model,
|
|
dtype=dtype,
|
|
enable_chunked_prefill=True,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
max_num_seqs=max_num_seqs) as vllm_model:
|
|
chunked = vllm_model.generate_greedy(example_prompts,
|
|
max_tokens=max_tokens)
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=chunked,
|
|
outputs_1_lst=non_chunked,
|
|
name_0="chunked",
|
|
name_1="non_chunked",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [15])
|
|
def test_parallel_sampling(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
for_loop_outputs = []
|
|
for _ in range(10):
|
|
for_loop_outputs.append(
|
|
# using example_prompts index 1 instead of 0 since with 0 the
|
|
# logprobs get really close and the test doesn't pass
|
|
vllm_model.generate_greedy([example_prompts[1]], max_tokens)
|
|
[0])
|
|
sampling_params = SamplingParams(n=10,
|
|
temperature=0.001,
|
|
seed=0,
|
|
max_tokens=max_tokens)
|
|
n_lt_1_outputs = vllm_model.generate([example_prompts[1]],
|
|
sampling_params)
|
|
token_ids, texts = n_lt_1_outputs[0]
|
|
n_lt_1_outputs = [(token_id, text)
|
|
for token_id, text in zip(token_ids, texts)]
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=n_lt_1_outputs,
|
|
outputs_1_lst=for_loop_outputs,
|
|
name_0="vllm_n_lt_1_outputs",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [20])
|
|
def test_mamba_cache_cg_padding(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
# This test is for verifying that mamba cache is padded to CG captured
|
|
# batch size. If it's not, a torch RuntimeError will be raised because
|
|
# tensor dimensions aren't compatible
|
|
vllm_config = EngineArgs(model=model).create_engine_config()
|
|
while len(example_prompts) == vllm_config.pad_for_cudagraph(
|
|
len(example_prompts)):
|
|
example_prompts.append(example_prompts[0])
|
|
|
|
try:
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
except RuntimeError:
|
|
pytest.fail(
|
|
"Couldn't run batch size which is not equal to a Cuda Graph "
|
|
"captured batch size. "
|
|
"Could be related to mamba cache not padded correctly")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [20])
|
|
def test_models_preemption_recompute(
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
) -> None:
|
|
# Tests that outputs are identical with and w/o preemtions (recompute)
|
|
assert dtype == "float"
|
|
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
vllm_model.model.llm_engine.scheduler[
|
|
0].ENABLE_ARTIFICIAL_PREEMPT = True
|
|
preempt_vllm_outputs = vllm_model.generate_greedy(
|
|
example_prompts, max_tokens)
|
|
|
|
vllm_model.model.llm_engine.scheduler[
|
|
0].ENABLE_ARTIFICIAL_PREEMPT = False
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=preempt_vllm_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="vllm_preepmtions",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
def test_fail_upon_inc_requests_and_finished_requests_lt_available_blocks(
|
|
vllm_runner,
|
|
model: str,
|
|
dtype: str,
|
|
example_prompts,
|
|
) -> None:
|
|
# This test is for verifying that the Mamba inner state management doesn't
|
|
# collapse in case where the number of incoming requests and
|
|
# finished_requests_ids is larger than the maximum Mamba block capacity.
|
|
# This could generally happen due to the fact that Mamba does support
|
|
# statelessness mechanism where it can cleanup new incoming requests in
|
|
# a single step.
|
|
try:
|
|
with vllm_runner(model, dtype=dtype, max_num_seqs=10) as vllm_model:
|
|
vllm_model.generate_greedy([example_prompts[0]] * 100, 10)
|
|
except ValueError:
|
|
pytest.fail("Mamba inner state wasn't cleaned up properly between"
|
|
"steps finished requests registered unnecessarily ")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
def test_state_cleanup(
|
|
vllm_runner,
|
|
model: str,
|
|
dtype: str,
|
|
example_prompts,
|
|
) -> None:
|
|
# This test is for verifying that the Mamba state is cleaned up between
|
|
# steps, If its not cleaned, an error would be expected.
|
|
try:
|
|
with vllm_runner(model, dtype=dtype) as vllm_model:
|
|
for _ in range(10):
|
|
vllm_model.generate_greedy([example_prompts[0]] * 100, 1)
|
|
except ValueError:
|
|
pytest.fail("Mamba inner state wasn't cleaned up between states, "
|
|
"could be related to finished_requests_ids")
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
def test_multistep(
|
|
vllm_runner,
|
|
model: str,
|
|
dtype: str,
|
|
example_prompts,
|
|
) -> None:
|
|
with vllm_runner(model, num_scheduler_steps=8,
|
|
max_num_seqs=2) as vllm_model:
|
|
vllm_model.generate_greedy([example_prompts[0]] * 10, 1)
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["float"])
|
|
@pytest.mark.parametrize("max_tokens", [64])
|
|
def test_multistep_correctness(vllm_runner, model: str, dtype: str,
|
|
max_tokens: int, example_prompts) -> None:
|
|
with vllm_runner(model, num_scheduler_steps=8,
|
|
max_num_seqs=2) as vllm_model:
|
|
vllm_outputs_multistep = vllm_model.generate_greedy(
|
|
example_prompts, max_tokens)
|
|
|
|
with vllm_runner(model, num_scheduler_steps=1,
|
|
max_num_seqs=2) as vllm_model:
|
|
vllm_outputs_single_step = vllm_model.generate_greedy(
|
|
example_prompts, max_tokens)
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=vllm_outputs_multistep,
|
|
outputs_1_lst=vllm_outputs_single_step,
|
|
name_0="vllm_outputs_multistep",
|
|
name_1="vllm_outputs_single_step",
|
|
)
|