Ruheena Suhani Shaik 016b8d1b7f
Enabled BnB NF4 inference on Gaudi (#20172)
Signed-off-by: Ruheena Suhani Shaik <rsshaik@habana.ai>
2025-07-14 20:26:08 -07:00

611 lines
22 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Callable, Optional, Union
import torch
from vllm.model_executor.layers.fused_moe.layer import (FusedMoE,
FusedMoEMethodBase)
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
UnquantizedLinearMethod,
set_weight_attrs)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.platforms import current_platform
from vllm.utils import direct_register_custom_op
class BitsAndBytesConfig(QuantizationConfig):
"""Config class for BitsAndBytes Quantization.
Reference: https://arxiv.org/abs/2305.14314
"""
def __init__(
self,
load_in_8bit: bool = False,
load_in_4bit: bool = True,
bnb_4bit_compute_dtype: str = "float32",
bnb_4bit_quant_storage: str = "uint8",
bnb_4bit_quant_type: str = "fp4",
bnb_4bit_use_double_quant: bool = False,
llm_int8_enable_fp32_cpu_offload: bool = False,
llm_int8_has_fp16_weight: bool = False,
llm_int8_skip_modules: Optional[list[str]] = None,
llm_int8_threshold: float = 6.0,
) -> None:
super().__init__()
self.load_in_8bit = load_in_8bit
self.load_in_4bit = load_in_4bit
self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype
self.bnb_4bit_quant_storage = bnb_4bit_quant_storage
self.bnb_4bit_quant_type = bnb_4bit_quant_type
self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant
self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload
self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight
self.llm_int8_skip_modules = llm_int8_skip_modules or []
self.llm_int8_threshold = llm_int8_threshold
if self.bnb_4bit_quant_storage not in ["uint8"]:
raise ValueError("Unsupported bnb_4bit_quant_storage: "
f"{self.bnb_4bit_quant_storage}")
def __repr__(self) -> str:
return (f"BitsAndBytesConfig(load_in_8bit={self.load_in_8bit}, "
f"load_in_4bit={self.load_in_4bit}, "
f"bnb_4bit_compute_dtype={self.bnb_4bit_compute_dtype}, "
f"bnb_4bit_quant_storage={self.bnb_4bit_quant_storage}, "
f"bnb_4bit_quant_type={self.bnb_4bit_quant_type}, "
f"llm_int8_skip_modules={self.llm_int8_skip_modules})")
@classmethod
def get_name(self) -> QuantizationMethods:
return "bitsandbytes"
@classmethod
def get_supported_act_dtypes(self) -> list[torch.dtype]:
return [torch.float32, torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 70
@staticmethod
def get_config_filenames() -> list[str]:
return []
@classmethod
def from_config(cls, config: dict[str, Any]) -> "BitsAndBytesConfig":
def get_safe_value(config, keys, default_value=None):
try:
value = cls.get_from_keys(config, keys)
return value if value is not None else default_value
except ValueError:
return default_value
load_in_8bit = get_safe_value(config, ["load_in_8bit"],
default_value=False)
load_in_4bit = get_safe_value(config, ["load_in_4bit"],
default_value=True)
bnb_4bit_compute_dtype = get_safe_value(config,
["bnb_4bit_compute_dtype"],
default_value="float32")
bnb_4bit_quant_storage = get_safe_value(config,
["bnb_4bit_quant_storage"],
default_value="uint8")
bnb_4bit_quant_type = get_safe_value(config, ["bnb_4bit_quant_type"],
default_value="fp4")
bnb_4bit_use_double_quant = get_safe_value(
config, ["bnb_4bit_use_double_quant"], default_value=False)
llm_int8_enable_fp32_cpu_offload = get_safe_value(
config, ["llm_int8_enable_fp32_cpu_offload"], default_value=False)
llm_int8_has_fp16_weight = get_safe_value(config,
["llm_int8_has_fp16_weight"],
default_value=False)
llm_int8_skip_modules = get_safe_value(config,
["llm_int8_skip_modules"],
default_value=[])
llm_int8_threshold = get_safe_value(config, ["llm_int8_threshold"],
default_value=6.0)
return cls(
load_in_8bit=load_in_8bit,
load_in_4bit=load_in_4bit,
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype,
bnb_4bit_quant_storage=bnb_4bit_quant_storage,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
llm_int8_enable_fp32_cpu_offload=llm_int8_enable_fp32_cpu_offload,
llm_int8_has_fp16_weight=llm_int8_has_fp16_weight,
llm_int8_skip_modules=llm_int8_skip_modules,
llm_int8_threshold=llm_int8_threshold)
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional[Union["LinearMethodBase", "BitsAndBytesMoEMethod"]]:
if isinstance(layer, LinearBase):
if is_layer_skipped_bnb(prefix, self.llm_int8_skip_modules):
return UnquantizedLinearMethod()
return BitsAndBytesLinearMethod(self)
elif isinstance(layer, FusedMoE):
return BitsAndBytesMoEMethod(self)
return None
def is_layer_skipped_bnb(prefix: str, llm_int8_skip_modules: list[str]):
# Split the prefix into its dot-separated components
components = prefix.split('.')
# Check if any of the skip modules exactly matches any component
substr_check = any(module_name in components
for module_name in llm_int8_skip_modules)
# Allow certain layers to not be quantized
set_components = set(".".join(components[:i + 1])
for i in range(len(components)))
set_llm_int8_skip_modules = set(llm_int8_skip_modules)
prefix_check = len(set_llm_int8_skip_modules & set_components) != 0
return substr_check or prefix_check
def calculate_quant_ratio(dtype):
if dtype.is_floating_point:
return torch.finfo(dtype).bits // torch.iinfo(torch.uint8).bits
else:
return torch.iinfo(dtype).bits // torch.iinfo(torch.uint8).bits
class BitsAndBytesLinearMethod(LinearMethodBase):
"""Linear method for BitsAndBytes.
Args:
quant_config: The BitsAndBytes quantization config.
"""
def __init__(self, quant_config: BitsAndBytesConfig):
try:
import bitsandbytes
if bitsandbytes.__version__ < "0.46.1":
raise ImportError("bitsandbytes version is wrong. Please "
"install bitsandbytes>=0.46.1.")
except ImportError as err:
raise ImportError("Please install bitsandbytes>=0.46.1 via "
"`pip install bitsandbytes>=0.46.1` to use "
"bitsandbytes quantizer.") from err
self.quant_config = quant_config
def create_weights(self, layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
from bitsandbytes.nn import Int8Params
def create_qweight_for_8bit():
qweight = Int8Params(
data=torch.empty(sum(output_partition_sizes),
input_size_per_partition,
dtype=torch.int8),
has_fp16_weights=self.quant_config.llm_int8_has_fp16_weight,
requires_grad=False)
set_weight_attrs(
qweight, {
"input_dim": 0,
"output_dim": 0,
"pack_factor": 1,
"use_bitsandbytes_8bit": True,
"generation": 0
})
return qweight
def create_qweight_for_4bit():
quant_ratio = calculate_quant_ratio(params_dtype)
total_size = input_size_per_partition * sum(output_partition_sizes)
if total_size % quant_ratio != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape.")
qweight = torch.nn.Parameter(torch.empty(total_size // quant_ratio,
1,
dtype=torch.uint8),
requires_grad=False)
set_weight_attrs(
qweight, {
"input_dim": 0,
"output_dim": 0,
"pack_factor": quant_ratio,
"use_bitsandbytes_4bit": True
})
return qweight
if self.quant_config.load_in_8bit:
qweight = create_qweight_for_8bit()
else:
qweight = create_qweight_for_4bit()
# Enable parameters to have the same name as in the BNB
# checkpoint format.
layer.register_parameter("weight", qweight)
set_weight_attrs(qweight, extra_weight_attrs)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.quant_config.load_in_8bit:
return self._apply_8bit_weight(layer, x, bias)
else:
return self._apply_4bit_weight(layer, x, bias)
def _apply_8bit_weight(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
# only load the bitsandbytes module when needed
from bitsandbytes import MatmulLtState, matmul
original_type = x.dtype
original_shape = x.shape
reshape_after_matmul = False
if x.ndim > 2:
x = x.reshape(-1, x.size(-1))
reshape_after_matmul = True
bf_x = x.to(torch.bfloat16)
qweight = layer.weight
offsets = qweight.bnb_shard_offsets
quant_states = qweight.bnb_quant_state
matmul_states = qweight.matmul_state
generation = qweight.generation
out_dim_0 = x.shape[0]
out_dim_1 = sum(
[quant_state[1].shape[0] for quant_state in quant_states.items()])
out = torch.empty(out_dim_0,
out_dim_1,
dtype=torch.float16,
device=x.device)
current_index = 0
for i in range(len(quant_states)):
output_size = quant_states[i].shape[0]
# in profile_run or the first generation of inference,
# create new matmul_states
if generation == 0 or generation == 1:
matmul_states[i] = MatmulLtState()
matmul_states[i].CB = qweight[offsets[i]:offsets[i + 1]]
matmul_states[i].SCB = quant_states[i].to(x.device)
matmul_states[i].threshold = (
self.quant_config.llm_int8_threshold)
matmul_states[i].has_fp16_weights = (
self.quant_config.llm_int8_has_fp16_weight)
matmul_states[i].is_training = False
if matmul_states[i].threshold > 0.0 and not matmul_states[
i].has_fp16_weights:
matmul_states[i].use_pool = True
new_x = bf_x.unsqueeze(0)
out[:, current_index:current_index + output_size] = matmul(
new_x,
qweight[offsets[i]:offsets[i + 1]],
state=matmul_states[i])
current_index += output_size
# only update the matmul_states if it is not profile_run
if (generation > 0
and not self.quant_config.llm_int8_has_fp16_weight
and matmul_states[i].CB is not None
and matmul_states[i].CxB is not None):
del matmul_states[i].CB
qweight[offsets[i]:offsets[i + 1]] = matmul_states[i].CxB
out = out.to(original_type)
if reshape_after_matmul:
out = out.view(*original_shape[:-1], out.size(-1))
if bias is not None:
out += bias
qweight.generation += 1
return out
def _apply_4bit_weight(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
original_type = x.dtype
original_shape = x.shape
reshape_after_matmul = False
if x.ndim > 2:
x = x.reshape(-1, x.size(-1))
reshape_after_matmul = True
bf_x = x.to(torch.bfloat16)
qweight = layer.weight
quant_states = qweight.bnb_quant_state
offsets = qweight.bnb_shard_offsets
out_dim_0 = x.shape[0]
out_dim_1 = sum(
[quant_state[1].shape[0] for quant_state in quant_states.items()])
out = torch.empty(out_dim_0,
out_dim_1,
dtype=torch.bfloat16,
device=x.device)
apply_bnb_4bit(bf_x, qweight, offsets, out)
out = out.to(original_type)
if reshape_after_matmul:
out = out.view(*original_shape[:-1], out.size(-1))
if bias is not None:
out += bias
return out
def _apply_bnb_4bit(
x: torch.Tensor,
weight: torch.Tensor,
offsets: torch.Tensor,
out: torch.Tensor,
) -> None:
# only load the bitsandbytes module when needed
from bitsandbytes import matmul_4bit
quant_states = weight.bnb_quant_state
current_index = 0
for i in range(len(quant_states)):
output_size = quant_states[i].shape[0]
# It is more efficient to use out kwarg like
# matmul_4bit(..., out = ...). Infeasible now due to the bug
# https://github.com/TimDettmers/bitsandbytes/issues/1235.
# Need to change after the bug is fixed.
out[:, current_index:current_index + output_size] = matmul_4bit(
x, weight[offsets[i]:offsets[i + 1]].t(), quant_states[i])
current_index += output_size
def _apply_bnb_4bit_fake(
x: torch.Tensor,
weight: torch.Tensor,
offsets: torch.Tensor,
out: torch.Tensor,
) -> None:
return
try:
direct_register_custom_op(op_name="apply_bnb_4bit",
op_func=_apply_bnb_4bit,
mutates_args=["out"],
fake_impl=_apply_bnb_4bit_fake,
dispatch_key=current_platform.dispatch_key)
apply_bnb_4bit = torch.ops.vllm.apply_bnb_4bit
except AttributeError as error:
raise error
class BitsAndBytesMoEMethod(FusedMoEMethodBase):
"""MoE method for BitsAndBytes.
Args:
quant_config: The BitsAndBytes quantization config.
"""
def __init__(self, quant_config: BitsAndBytesConfig):
try:
import bitsandbytes
if bitsandbytes.__version__ < "0.45.3":
raise ImportError("bitsandbytes version is wrong. Please "
"install bitsandbytes>=0.45.3.")
except ImportError as err:
raise ImportError("Please install bitsandbytes>=0.45.3 via "
"`pip install bitsandbytes>=0.45.3` to use "
"bitsandbytes quantizer.") from err
self.topk_indices_dtype = None
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
if self.quant_config.load_in_8bit:
call_fun = self._create_weights_8bit
else:
call_fun = self._create_weights_4bit
call_fun(
layer,
num_experts,
hidden_size,
intermediate_size_per_partition,
params_dtype,
**extra_weight_attrs,
)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> torch.Tensor:
from vllm.model_executor.layers.fused_moe import fused_experts
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `BitsAndBytesMoEMethod` yet.")
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype)
if self.quant_config.load_in_8bit:
w13, w2 = self._apply_8bit_dequant(layer)
else:
w13, w2 = self._apply_4bit_dequnt(layer)
return fused_experts(
hidden_states=x,
w1=w13,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
)
def _create_weights_4bit(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
quant_ratio = calculate_quant_ratio(params_dtype)
# Fused gate_up_proj (column parallel)
w13_total_size = (hidden_size * 2 *
intermediate_size_per_partition) // quant_ratio
w13_qweight = torch.nn.Parameter(
torch.empty(
num_experts,
w13_total_size,
1,
dtype=torch.uint8,
),
requires_grad=False,
)
layer.register_parameter("w13_weight", w13_qweight)
set_weight_attrs(w13_qweight, extra_weight_attrs)
set_weight_attrs(
w13_qweight,
{
"num_experts":
num_experts,
"input_dim":
hidden_size,
"output_dim":
2 * intermediate_size_per_partition,
"experts_shape": (
num_experts,
intermediate_size_per_partition * 2,
hidden_size,
),
"pack_factor":
quant_ratio,
"use_bitsandbytes_4bit":
True,
},
)
# down_proj (row parallel)
w2_total_size = (hidden_size *
intermediate_size_per_partition) // quant_ratio
w2_qweight = torch.nn.Parameter(
torch.empty(
num_experts,
w2_total_size,
1,
dtype=torch.uint8,
),
requires_grad=False,
)
set_weight_attrs(
w2_qweight,
{
"num_experts":
num_experts,
"input_dim":
intermediate_size_per_partition,
"output_dim":
hidden_size,
"experts_shape": (
num_experts,
hidden_size,
intermediate_size_per_partition,
),
"pack_factor":
quant_ratio,
"use_bitsandbytes_4bit":
True,
},
)
layer.register_parameter("w2_weight", w2_qweight)
set_weight_attrs(w2_qweight, extra_weight_attrs)
def _create_weights_8bit(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
raise NotImplementedError
def _apply_4bit_dequnt(
self, layer: torch.nn.Module) -> tuple[torch.Tensor, torch.Tensor]:
from bitsandbytes.functional import dequantize_4bit
w13 = dequantize_4bit(
layer.w13_weight.reshape(-1, 1),
layer.w13_weight.bnb_quant_state,
)
w2 = dequantize_4bit(
layer.w2_weight.reshape(-1, 1),
layer.w2_weight.bnb_quant_state,
)
w13 = w13.reshape(layer.w13_weight.experts_shape)
w2 = w2.reshape(layer.w2_weight.experts_shape)
return w13, w2
def _apply_8bit_dequant(
self, layer: torch.nn.Module) -> tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError