Isotr0py 01cae37713
[CI/Build] Ensure compatability with Transformers v4.53 (#20541)
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-07-11 20:53:07 -07:00

539 lines
22 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 The vLLM team.
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Iterable
from typing import Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from transformers import Gemma3TextConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import GeluAndMul
from vllm.model_executor.layers.layernorm import GemmaRMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
logger = init_logger(__name__)
class Gemma3MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_activation: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
if hidden_activation != "gelu_pytorch_tanh":
raise ValueError(
"Gemma3 uses `gelu_pytorch_tanh` as the hidden activation "
"function. Please set `hidden_act` and `hidden_activation` to "
"`gelu_pytorch_tanh`.")
self.act_fn = GeluAndMul(approximate="tanh")
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class Gemma3Attention(nn.Module):
def __init__(self,
config: Gemma3TextConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
attn_logits_soft_cap: Optional[float] = None,
prefix: str = "") -> None:
super().__init__()
self.config = config
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = config.query_pre_attn_scalar**-0.5
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=config.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=config.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.q_norm = GemmaRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = GemmaRMSNorm(self.head_dim, eps=config.rms_norm_eps)
# TODO(woosuk): Add reference to the original HF implementation.
layer_idx = extract_layer_index(prefix)
self.is_sliding = (getattr(
config, "interleaved_sliding_window", None) is not None and (bool(
(layer_idx + 1) % config.sliding_window_pattern))) or (
getattr(config, "layer_types", None) is not None
and config.layer_types[layer_idx] == "sliding_attention")
# Initialize the rotary embedding.
if self.is_sliding:
# Local attention. Override the values in config.json.
self.rope_theta = config.rope_local_base_freq
self.rope_scaling = {"rope_type": "default"}
self.sliding_window = (config.interleaved_sliding_window
or config.sliding_window)
else:
# Global attention. Use the values in config.json.
self.rope_theta = config.rope_theta
self.rope_scaling = config.rope_scaling
self.sliding_window = None
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=self.rope_theta,
is_neox_style=True,
rope_scaling=self.rope_scaling,
)
# Initialize the attention.
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
logits_soft_cap=attn_logits_soft_cap,
per_layer_sliding_window=self.sliding_window,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = q.unflatten(-1, (self.num_heads, self.head_dim))
q = self.q_norm(q)
q = q.flatten(-2, -1)
k = k.unflatten(-1, (self.num_kv_heads, self.head_dim))
k = self.k_norm(k)
k = k.flatten(-2, -1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
if not kwargs.get("has_images", False):
# Fast path for text-only inputs. The performance for the text-only
# inputs are not affected by the naive attention below.
output, _ = self.o_proj(attn_output)
return output
# NOTE(woosuk): Gemma3 uses bidirectional attention between image tokens
# that correspond to the same image while using causal attention
# otherwise. Current attention backends cannot handle this pattern, so
# we temporarily use a naive attention implementation with mask tensors.
# We intentionally keep the attention backend as-is and only override
# `attn_output` with the naive implementation's output. This minimizes
# changes to existing model runners and attention backends. The call to
# `self.attn(q, k, v)` is only used to populate the KV cache - its
# output is discarded and overwritten below. While this duplicates
# computation, it maintains compatibility.
# TODO(woosuk): Optimize by implementing custom attention kernels.
attn_output = self.naive_attn_with_masks(q,
k,
v,
out=attn_output,
**kwargs)
output, _ = self.o_proj(attn_output)
return output
def naive_attn_with_masks(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
out: torch.Tensor,
**kwargs,
) -> torch.Tensor:
# NOTE(woosuk): As described in the comment above, this code is not
# meant to be performant. It is only meant to be correct.
q = q.view(-1, self.num_heads, self.head_dim)
# Expand the key and value to handle GQA.
num_queries_per_kv = self.num_heads // self.num_kv_heads
k = k.view(-1, self.num_kv_heads, self.head_dim)
k = k.repeat_interleave(num_queries_per_kv, dim=-2)
v = v.view(-1, self.num_kv_heads, self.head_dim)
v = v.repeat_interleave(num_queries_per_kv, dim=-2)
if self.is_sliding:
attn_masks = kwargs["local_attn_masks"]
else:
attn_masks = kwargs["global_attn_masks"]
seq_lens = kwargs["seq_lens"]
start_idx = 0
for seq_len, attn_mask in zip(seq_lens, attn_masks):
end_idx = start_idx + seq_len
query = q[start_idx:end_idx].unsqueeze(0)
key = k[start_idx:end_idx].unsqueeze(0)
value = v[start_idx:end_idx].unsqueeze(0)
# Transpose.
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
output = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask,
self.scaling,
)
output = output.transpose(1, 2).flatten(-2, -1)
out[start_idx:end_idx] = output
start_idx = end_idx
return out
class Gemma3DecoderLayer(nn.Module):
def __init__(
self,
config: Gemma3TextConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Gemma3Attention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
head_dim=config.head_dim,
max_position_embeddings=config.max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
attn_logits_soft_cap=None,
prefix=f"{prefix}.self_attn",
)
self.hidden_size = config.hidden_size
self.mlp = Gemma3MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_activation=config.hidden_activation,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_feedforward_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, residual = self.pre_feedforward_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
return hidden_states, residual
@support_torch_compile
class Gemma3Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
prefix=f"{prefix}.embed_tokens",
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Gemma3DecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# Normalize the embedding by sqrt(hidden_size)
# The normalizer's data type should be downcasted to the model's
# data type such as bfloat16, not float32.
# See https://github.com/huggingface/transformers/pull/29402
normalizer = self.config.hidden_size**0.5
self.register_buffer("normalizer",
torch.tensor(normalizer),
persistent=False)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
# NOTE(woosuk): Only apply the normalizer to the output of
# vocab embedding. Don't apply it to the vision embedding.
return self.embed_tokens(input_ids) * self.normalizer
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states, residual = layer(
positions,
hidden_states,
residual,
**kwargs,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache scales for compressed-tensors quantization
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = loaded_weight[0]
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for (param_name, shard_name, shard_id) in stacked_params_mapping:
if shard_name not in name:
continue
name = name.replace(shard_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Gemma3ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
del lora_config # Unused.
super().__init__()
self.config = config
# currently all existing Gemma models have `tie_word_embeddings` enabled
assert config.tie_word_embeddings
self.quant_config = quant_config
self.model = Gemma3Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.logits_processor = LogitsProcessor(
config.vocab_size, soft_cap=config.final_logit_softcapping)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds, **kwargs)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.model.embed_tokens, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."]
if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)