mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 22:25:47 +08:00
365 lines
14 KiB
Python
365 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from collections.abc import Iterable, Mapping
|
|
from typing import Literal, Optional, TypedDict, Union, cast
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import BatchFeature
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.jsontree import json_map_leaves
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import MultiModalFieldConfig
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs.minimax_vl_01 import MiniMaxVL01Config
|
|
|
|
from .clip import CLIPVisionModel
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .llava import (BaseLlavaMultiModalProcessor, LlavaDummyInputsBuilder,
|
|
init_vision_tower_for_llava)
|
|
from .llava_next import LlavaNextProcessingInfo
|
|
from .pixtral import PixtralHFVisionModel
|
|
from .siglip import SiglipVisionModel
|
|
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
|
|
maybe_prefix, merge_multimodal_embeddings)
|
|
|
|
|
|
class MiniMaxVL01ImagePixelInputs(TypedDict):
|
|
type: Literal["pixel_values"]
|
|
pixel_values: torch.Tensor
|
|
"""
|
|
Shape: `(batch_size * num_images, num_channels, height, width)`
|
|
|
|
Note that `height` or `width` may be different per batch and image,
|
|
in which case the data is passed as a list instead of a batched tensor.
|
|
"""
|
|
|
|
|
|
class MiniMaxVL01ImageEmbeddingInputs(TypedDict):
|
|
type: Literal["image_embeds"]
|
|
data: torch.Tensor
|
|
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
|
|
|
|
`hidden_size` must match the hidden size of language model backbone.
|
|
"""
|
|
|
|
|
|
MiniMaxVL01ImageInputs = Union[MiniMaxVL01ImagePixelInputs,
|
|
MiniMaxVL01ImageEmbeddingInputs]
|
|
|
|
|
|
class MiniMaxVL01MultiModalProjector(nn.Module):
|
|
|
|
def __init__(self,
|
|
vision_hidden_size: int,
|
|
text_hidden_size: int,
|
|
projector_hidden_act: str,
|
|
multimodal_projector_bias: bool,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = ""):
|
|
super().__init__()
|
|
|
|
self.linear_1 = ColumnParallelLinear(vision_hidden_size,
|
|
text_hidden_size,
|
|
bias=multimodal_projector_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.linear_1")
|
|
self.act = get_act_fn(projector_hidden_act)
|
|
self.linear_2 = RowParallelLinear(text_hidden_size,
|
|
text_hidden_size,
|
|
bias=multimodal_projector_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.linear_2")
|
|
|
|
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.linear_1(image_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states, _ = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class MiniMaxVL01DummyInputsBuilder(LlavaDummyInputsBuilder):
|
|
pass
|
|
|
|
|
|
class MiniMaxVL01ProcessingInfo(LlavaNextProcessingInfo):
|
|
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(MiniMaxVL01Config)
|
|
|
|
def get_hf_processor(self, **kwargs: object):
|
|
hf_processor = self.ctx.get_hf_processor(**kwargs)
|
|
image_processor = hf_processor.image_processor
|
|
image_processor.anyres_preprocess = (
|
|
image_processor.anyres_for_vllm_preprocess)
|
|
|
|
return hf_processor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"image": None}
|
|
|
|
|
|
class MiniMaxVL01MultiModalProcessor(
|
|
BaseLlavaMultiModalProcessor[MiniMaxVL01ProcessingInfo]):
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
)
|
|
|
|
pixel_values = processed_outputs.get("pixel_values")
|
|
if pixel_values is not None:
|
|
# Avoid padding since we need the output for each image to be
|
|
# independent of other images for the cache to work correctly
|
|
image_sizes = processed_outputs["image_sizes"]
|
|
assert len(pixel_values) == len(image_sizes)
|
|
|
|
processed_outputs["pixel_values"] = [
|
|
p[:, :h, :w] for p, (h, w) in zip(pixel_values, image_sizes)
|
|
]
|
|
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return {
|
|
"pixel_values": MultiModalFieldConfig.batched("image"),
|
|
"image_embeds": MultiModalFieldConfig.batched("image"),
|
|
}
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
MiniMaxVL01MultiModalProcessor,
|
|
info=MiniMaxVL01ProcessingInfo,
|
|
dummy_inputs=MiniMaxVL01DummyInputsBuilder)
|
|
class MiniMaxVL01ForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
SupportsPP):
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"]
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
# TODO: Optionally initializes this for supporting embeddings.
|
|
self.vision_tower = init_vision_tower_for_llava(
|
|
config,
|
|
quant_config,
|
|
require_post_norm=False,
|
|
prefix=maybe_prefix(prefix, "vision_tower"))
|
|
self.multi_modal_projector = MiniMaxVL01MultiModalProjector(
|
|
vision_hidden_size=config.vision_config.hidden_size,
|
|
text_hidden_size=config.text_config.hidden_size,
|
|
projector_hidden_act=config.projector_hidden_act,
|
|
multimodal_projector_bias=True,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "multi_modal_projector"))
|
|
self.image_newline = nn.Parameter(
|
|
torch.empty(config.text_config.hidden_size))
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
)
|
|
self.vision_feature_layer = config.vision_feature_layer
|
|
self.vocab_size = config.text_config.vocab_size
|
|
self.pad_token_id = -1
|
|
if self.config.pad_token_id is not None:
|
|
self.pad_token_id = self.config.pad_token_id
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
if multimodal_embeddings is not None:
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids,
|
|
inputs_embeds,
|
|
multimodal_embeddings,
|
|
self.config.image_token_index,
|
|
)
|
|
return inputs_embeds
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def _select_image_features(self, image_features: torch.Tensor, *,
|
|
strategy: str) -> torch.Tensor:
|
|
if strategy == "default":
|
|
return image_features[:, 1:]
|
|
elif strategy == "full":
|
|
return image_features
|
|
|
|
raise ValueError(f"Unexpected select feature strategy: {strategy}")
|
|
|
|
def _image_pixels_to_features(
|
|
self,
|
|
vision_tower: Union[CLIPVisionModel, SiglipVisionModel,
|
|
PixtralHFVisionModel],
|
|
pixel_values: Union[torch.Tensor, list[torch.Tensor]],
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
|
|
# NOTE: we skip the step to select the vision feature layer since
|
|
# this is already done inside the vision tower
|
|
image_features = vision_tower(pixel_values)
|
|
|
|
def select_features(leaf: torch.Tensor):
|
|
return self._select_image_features(
|
|
leaf,
|
|
strategy=self.config.vision_feature_select_strategy,
|
|
)
|
|
|
|
return cast(
|
|
Union[torch.Tensor, tuple[torch.Tensor, ...]],
|
|
json_map_leaves(select_features, image_features),
|
|
)
|
|
|
|
def _process_image_pixels(
|
|
self,
|
|
inputs: MiniMaxVL01ImagePixelInputs,
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
|
|
assert self.vision_tower is not None
|
|
|
|
pixel_values = inputs["pixel_values"]
|
|
|
|
return self._image_pixels_to_features(self.vision_tower, pixel_values)
|
|
|
|
def _process_image_input(
|
|
self,
|
|
image_input: MiniMaxVL01ImageInputs,
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
|
|
if image_input["type"] == "image_embeds":
|
|
return image_input["data"]
|
|
|
|
assert self.vision_tower is not None
|
|
image_features = self._process_image_pixels(image_input)
|
|
|
|
if isinstance(image_features, torch.Tensor):
|
|
return self.multi_modal_projector(image_features)
|
|
|
|
feature_sizes = [
|
|
image_feature.shape[0] for image_feature in image_features
|
|
]
|
|
|
|
image_embeds = self.multi_modal_projector(torch.cat(image_features))
|
|
image_embeds = torch.split(image_embeds, feature_sizes)
|
|
return image_embeds
|
|
|
|
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
|
h = w = self.config.vision_config.image_size
|
|
expected_dims = (3, h, w)
|
|
actual_dims = tuple(data.shape[1:])
|
|
|
|
if actual_dims != expected_dims:
|
|
expected_expr = ("batch_size", *map(str, expected_dims))
|
|
raise ValueError(
|
|
f"The expected shape of pixel values is {expected_expr}. "
|
|
f"You supplied {tuple(data.shape)}.")
|
|
|
|
return data
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object) -> Optional[MiniMaxVL01ImageInputs]:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
if not isinstance(pixel_values, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of pixel values. "
|
|
f"Got type: {type(pixel_values)}")
|
|
|
|
return MiniMaxVL01ImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=self._validate_pixel_values(
|
|
flatten_bn(pixel_values, concat=True)),
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
if not isinstance(image_embeds, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of image embeddings. "
|
|
f"Got type: {type(image_embeds)}")
|
|
|
|
return MiniMaxVL01ImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
data=flatten_bn(image_embeds, concat=True),
|
|
)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def get_multimodal_embeddings(
|
|
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return None
|
|
|
|
return self._process_image_input(image_input)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
elif inputs_embeds is None:
|
|
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
inputs_embeds = self.get_input_embeddings(input_ids,
|
|
vision_embeddings)
|
|
input_ids = None
|
|
|
|
hidden_states = self.language_model.model(input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.language_model.compute_logits(hidden_states,
|
|
sampling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|