vllm/vllm/entrypoints/openai/api_server.py
Dan Clark 03d37f2441
[Fix] Add args for mTLS support (#3430)
Co-authored-by: declark1 <daniel.clark@ibm.com>
2024-03-15 09:56:13 -07:00

279 lines
10 KiB
Python

import argparse
import asyncio
import json
from contextlib import asynccontextmanager
import os
import importlib
import inspect
import ssl
from prometheus_client import make_asgi_app
import fastapi
import uvicorn
from http import HTTPStatus
from fastapi import Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse, Response
import vllm
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (CompletionRequest,
ChatCompletionRequest,
ErrorResponse)
from vllm.logger import init_logger
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_engine import LoRA
TIMEOUT_KEEP_ALIVE = 5 # seconds
openai_serving_chat: OpenAIServingChat = None
openai_serving_completion: OpenAIServingCompletion = None
logger = init_logger(__name__)
@asynccontextmanager
async def lifespan(app: fastapi.FastAPI):
async def _force_log():
while True:
await asyncio.sleep(10)
await engine.do_log_stats()
if not engine_args.disable_log_stats:
asyncio.create_task(_force_log())
yield
app = fastapi.FastAPI(lifespan=lifespan)
class LoRAParserAction(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
lora_list = []
for item in values:
name, path = item.split('=')
lora_list.append(LoRA(name, path))
setattr(namespace, self.dest, lora_list)
def parse_args():
parser = argparse.ArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server.")
parser.add_argument("--host", type=str, default=None, help="host name")
parser.add_argument("--port", type=int, default=8000, help="port number")
parser.add_argument(
"--uvicorn-log-level",
type=str,
default="info",
choices=['debug', 'info', 'warning', 'error', 'critical', 'trace'],
help="log level for uvicorn")
parser.add_argument("--allow-credentials",
action="store_true",
help="allow credentials")
parser.add_argument("--allowed-origins",
type=json.loads,
default=["*"],
help="allowed origins")
parser.add_argument("--allowed-methods",
type=json.loads,
default=["*"],
help="allowed methods")
parser.add_argument("--allowed-headers",
type=json.loads,
default=["*"],
help="allowed headers")
parser.add_argument("--api-key",
type=str,
default=None,
help="If provided, the server will require this key "
"to be presented in the header.")
parser.add_argument("--served-model-name",
type=str,
default=None,
help="The model name used in the API. If not "
"specified, the model name will be the same as "
"the huggingface name.")
parser.add_argument(
"--lora-modules",
type=str,
default=None,
nargs='+',
action=LoRAParserAction,
help="LoRA module configurations in the format name=path. "
"Multiple modules can be specified.")
parser.add_argument("--chat-template",
type=str,
default=None,
help="The file path to the chat template, "
"or the template in single-line form "
"for the specified model")
parser.add_argument("--response-role",
type=str,
default="assistant",
help="The role name to return if "
"`request.add_generation_prompt=true`.")
parser.add_argument("--ssl-keyfile",
type=str,
default=None,
help="The file path to the SSL key file")
parser.add_argument("--ssl-certfile",
type=str,
default=None,
help="The file path to the SSL cert file")
parser.add_argument("--ssl-ca-certs",
type=str,
default=None,
help="The CA certificates file")
parser.add_argument(
"--ssl-cert-reqs",
type=int,
default=int(ssl.CERT_NONE),
help="Whether client certificate is required (see stdlib ssl module's)"
)
parser.add_argument(
"--root-path",
type=str,
default=None,
help="FastAPI root_path when app is behind a path based routing proxy")
parser.add_argument(
"--middleware",
type=str,
action="append",
default=[],
help="Additional ASGI middleware to apply to the app. "
"We accept multiple --middleware arguments. "
"The value should be an import path. "
"If a function is provided, vLLM will add it to the server "
"using @app.middleware('http'). "
"If a class is provided, vLLM will add it to the server "
"using app.add_middleware(). ")
parser = AsyncEngineArgs.add_cli_args(parser)
return parser.parse_args()
# Add prometheus asgi middleware to route /metrics requests
metrics_app = make_asgi_app()
app.mount("/metrics", metrics_app)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
err = openai_serving_chat.create_error_response(message=str(exc))
return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST)
@app.get("/health")
async def health() -> Response:
"""Health check."""
await openai_serving_chat.engine.check_health()
return Response(status_code=200)
@app.get("/v1/models")
async def show_available_models():
models = await openai_serving_chat.show_available_models()
return JSONResponse(content=models.model_dump())
@app.get("/version")
async def show_version():
ver = {"version": vllm.__version__}
return JSONResponse(content=ver)
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest,
raw_request: Request):
generator = await openai_serving_chat.create_chat_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
if request.stream:
return StreamingResponse(content=generator,
media_type="text/event-stream")
else:
return JSONResponse(content=generator.model_dump())
@app.post("/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
generator = await openai_serving_completion.create_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
if request.stream:
return StreamingResponse(content=generator,
media_type="text/event-stream")
else:
return JSONResponse(content=generator.model_dump())
if __name__ == "__main__":
args = parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
if token := os.environ.get("VLLM_API_KEY") or args.api_key:
@app.middleware("http")
async def authentication(request: Request, call_next):
if not request.url.path.startswith("/v1"):
return await call_next(request)
if request.headers.get("Authorization") != "Bearer " + token:
return JSONResponse(content={"error": "Unauthorized"},
status_code=401)
return await call_next(request)
for middleware in args.middleware:
module_path, object_name = middleware.rsplit(".", 1)
imported = getattr(importlib.import_module(module_path), object_name)
if inspect.isclass(imported):
app.add_middleware(imported)
elif inspect.iscoroutinefunction(imported):
app.middleware("http")(imported)
else:
raise ValueError(f"Invalid middleware {middleware}. "
f"Must be a function or a class.")
logger.info(f"vLLM API server version {vllm.__version__}")
logger.info(f"args: {args}")
if args.served_model_name is not None:
served_model = args.served_model_name
else:
served_model = args.model
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
openai_serving_chat = OpenAIServingChat(engine, served_model,
args.response_role,
args.lora_modules,
args.chat_template)
openai_serving_completion = OpenAIServingCompletion(
engine, served_model, args.lora_modules)
app.root_path = args.root_path
uvicorn.run(app,
host=args.host,
port=args.port,
log_level=args.uvicorn_log_level,
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
ssl_ca_certs=args.ssl_ca_certs,
ssl_cert_reqs=args.ssl_cert_reqs)