mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 20:35:01 +08:00
252 lines
8.0 KiB
Python
252 lines
8.0 KiB
Python
"""Attention layer with FlashAttention."""
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionMetadata, AttentionType)
|
|
from vllm.forward_context import get_forward_context
|
|
from vllm.utils import direct_register_custom_op
|
|
from vllm.vllm_flash_attn import flash_attn_varlen_func
|
|
|
|
|
|
class FlashAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_supported_head_sizes() -> List[int]:
|
|
return [32, 64, 96, 128, 160, 192, 224, 256]
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "FLASH_ATTN_VLLM_V1"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["FlashAttentionImpl"]:
|
|
return FlashAttentionImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
return FlashAttentionMetadata
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
if block_size % 16 != 0:
|
|
raise ValueError("Block size must be a multiple of 16.")
|
|
return (2, num_blocks, block_size, num_kv_heads, head_size)
|
|
|
|
|
|
@dataclass
|
|
class FlashAttentionMetadata:
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
num_actual_tokens: int # Number of tokens excluding padding.
|
|
max_query_len: int
|
|
query_start_loc: torch.Tensor
|
|
max_seq_len: int
|
|
seq_start_loc: torch.Tensor
|
|
block_table: torch.Tensor
|
|
slot_mapping: torch.Tensor
|
|
|
|
|
|
class FlashAttentionImpl(AttentionImpl):
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> None:
|
|
if blocksparse_params is not None:
|
|
raise ValueError(
|
|
"FlashAttention does not support block-sparse attention.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
if sliding_window is None:
|
|
self.sliding_window = (-1, -1)
|
|
else:
|
|
self.sliding_window = (sliding_window - 1, 0)
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
if logits_soft_cap is None:
|
|
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
|
|
logits_soft_cap = 0
|
|
self.logits_soft_cap = logits_soft_cap
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
|
|
support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
|
|
if head_size not in support_head_sizes:
|
|
raise ValueError(
|
|
f"Head size {head_size} is not supported by FlashAttention. "
|
|
f"Supported head sizes are: {support_head_sizes}.")
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: FlashAttentionMetadata,
|
|
k_scale: float = 1.0,
|
|
v_scale: float = 1.0,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with FlashAttention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"FlashAttentionImpl")
|
|
|
|
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
|
|
assert k_scale == 1.0 and v_scale == 1.0, (
|
|
"key/v_scale is not supported in FlashAttention.")
|
|
|
|
output = torch.empty_like(query)
|
|
torch.ops.vllm.unified_v1_flash_attention(
|
|
output,
|
|
query,
|
|
key,
|
|
value,
|
|
self.num_heads,
|
|
self.head_size,
|
|
self.num_kv_heads,
|
|
kv_cache,
|
|
self.kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
self.scale,
|
|
self.sliding_window,
|
|
self.alibi_slopes,
|
|
self.logits_soft_cap,
|
|
)
|
|
return output
|
|
|
|
|
|
def unified_v1_flash_attention(
|
|
output: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
num_heads: int,
|
|
head_size: int,
|
|
num_kv_heads: int,
|
|
kv_cache: torch.Tensor,
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
softmax_scale: float,
|
|
window_size: Optional[List[int]] = None,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> None:
|
|
context = get_forward_context()
|
|
current_metadata = context.dynamic_forward_context
|
|
if current_metadata is None:
|
|
# Profiling run.
|
|
return
|
|
|
|
assert current_metadata is not None
|
|
assert isinstance(current_metadata, FlashAttentionMetadata)
|
|
attn_metadata: FlashAttentionMetadata = current_metadata
|
|
num_actual_tokens = attn_metadata.num_actual_tokens
|
|
|
|
# Reshape the query, key, and value tensors.
|
|
query = query.view(-1, num_heads, head_size)
|
|
key = key.view(-1, num_kv_heads, head_size)
|
|
value = value.view(-1, num_kv_heads, head_size)
|
|
|
|
# Reshape the input keys and values and store them in the cache.
|
|
key_cache = kv_cache[0]
|
|
value_cache = kv_cache[1]
|
|
torch.ops._C_cache_ops.reshape_and_cache_flash(
|
|
key[:num_actual_tokens],
|
|
value[:num_actual_tokens],
|
|
key_cache,
|
|
value_cache,
|
|
attn_metadata.slot_mapping,
|
|
kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
)
|
|
|
|
attn_output = flash_attn_varlen_func(
|
|
q=query[:num_actual_tokens],
|
|
k=key_cache,
|
|
v=value_cache,
|
|
cu_seqlens_q=attn_metadata.query_start_loc,
|
|
max_seqlen_q=attn_metadata.max_query_len,
|
|
cu_seqlens_k=attn_metadata.seq_start_loc,
|
|
max_seqlen_k=attn_metadata.max_seq_len,
|
|
softmax_scale=softmax_scale,
|
|
causal=True,
|
|
alibi_slopes=alibi_slopes,
|
|
window_size=window_size,
|
|
block_table=attn_metadata.block_table,
|
|
softcap=logits_soft_cap,
|
|
)
|
|
attn_output = attn_output.view(num_actual_tokens, -1)
|
|
# TODO(woosuk): Optimize this.
|
|
output[:num_actual_tokens].copy_(attn_output)
|
|
|
|
|
|
def unified_v1_flash_attention_fake(
|
|
output: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
num_heads: int,
|
|
head_size: int,
|
|
num_kv_heads: int,
|
|
kv_cache: torch.Tensor,
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
softmax_scale: float,
|
|
window_size: Optional[List[int]] = None,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> None:
|
|
return
|
|
|
|
|
|
direct_register_custom_op(
|
|
op_name="unified_v1_flash_attention",
|
|
op_func=unified_v1_flash_attention,
|
|
mutates_args=["kv_cache", "output"],
|
|
fake_impl=unified_v1_flash_attention_fake,
|
|
)
|