vllm/vllm/model_executor/models/deepencoder.py
Isotr0py 675aa2ec64
[Model] Upstream Deepseek-OCR model (#27247)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
2025-10-22 07:59:15 -07:00

674 lines
23 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# adapted from
# https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek-OCR-master/DeepSeek-OCR-vllm/deepencoder/sam_vary_sdpa.py
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from collections.abc import Iterable
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import CLIPVisionConfig
from vllm.attention.layer import MultiHeadAttention
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from .clip import CLIPEncoder, CLIPVisionEmbeddings
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: type[nn.Module] = nn.LayerNorm,
act_layer: type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: tuple[int, ...] = (),
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
""" # noqa: E501
super().__init__()
self.img_size = img_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: nn.Parameter | None = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(
1, img_size // patch_size, img_size // patch_size, embed_dim
)
)
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
self.net_3 = nn.Conv2d(
512, 1024, kernel_size=3, stride=2, padding=1, bias=False
)
def get_abs_pos(self, abs_pos: torch.Tensor, tgt_size: int):
dtype = abs_pos.dtype
src_size = abs_pos.size(1)
if src_size != tgt_size:
old_pos_embed = abs_pos.permute(0, 3, 1, 2)
old_pos_embed = old_pos_embed.to(torch.float32)
new_pos_embed = F.interpolate(
old_pos_embed,
size=(tgt_size, tgt_size),
mode="bicubic",
antialias=True,
align_corners=False,
).to(dtype)
new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
return new_pos_embed
else:
return abs_pos
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.get_abs_pos(self.pos_embed, x.size(1))
for blk in self.blocks:
x = blk(x)
neck_output = self.neck(x.permute(0, 3, 1, 2))
conv2_output = self.net_2(neck_output)
conv3_output = self.net_3(conv2_output)
return conv3_output
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation
blocks"""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: type[nn.Module] = nn.LayerNorm,
act_layer: type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: tuple[int, int] | None = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
""" # noqa: E501
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = RelPosAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.norm2 = norm_layer(dim)
self.mlp = MLPBlock(
embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x
x = x + self.mlp(self.norm2(x))
return x
class RelPosAttention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
input_size: tuple[int, int] | None = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
""" # noqa: E501
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
assert input_size is not None, (
"Input size must be provided if using relative positional encoding."
)
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = (
self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
rel_h, rel_w = None, None
if self.use_rel_pos:
rel_h, rel_w = add_decomposed_rel_pos(
q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
)
q = q.view(B, self.num_heads, H * W, -1)
k = k.view(B, self.num_heads, H * W, -1)
v = v.view(B, self.num_heads, H * W, -1)
if self.use_rel_pos:
rel_h = rel_h.view(
B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3)
)
rel_w = rel_w.view(
B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3)
)
attn_bias = (rel_h + rel_w).view(
B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4)
)
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_bias
)
else:
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = (
x.view(B, self.num_heads, H, W, -1)
.permute(0, 2, 3, 1, 4)
.reshape(B, H, W, -1)
)
x = self.proj(x)
return x
def window_partition(
x: torch.Tensor, window_size: int
) -> tuple[torch.Tensor, tuple[int, int]]:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
""" # noqa: E501
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = (
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
)
return windows, (Hp, Wp)
def window_unpartition(
windows: torch.Tensor,
window_size: int,
pad_hw: tuple[int, int],
hw: tuple[int, int],
) -> torch.Tensor:
"""
Window unpartition into original sequences and removing padding.
Args:
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
""" # noqa: E501
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
dtype = rel_pos.dtype
rel_pos = rel_pos.to(torch.float32)
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
).to(dtype)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(
k_size / q_size, 1.0
)
k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(
q_size / k_size, 1.0
)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
q: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: tuple[int, int],
k_size: tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
Args:
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
""" # noqa: E501
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
rel_h = rel_h.unsqueeze(-1)
rel_w = rel_w.unsqueeze(-2)
rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
return rel_h, rel_w
class PatchEmbed(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
kernel_size: tuple[int, int] = (16, 16),
stride: tuple[int, int] = (16, 16),
padding: tuple[int, int] = (0, 0),
in_chans: int = 3,
embed_dim: int = 768,
) -> None:
"""
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
return x
# TODO(Isotr0py): use vision_config to build sam model
def build_sam_vit_b():
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
)
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_encoder = ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
)
return image_encoder
class DeepCLIPVisionEmbeddings(CLIPVisionEmbeddings):
def get_abs_pos(self, abs_pos: torch.Tensor, tgt_size: int):
# abs_pos: L, C
# tgt_size: M
# return: M, C
dim = abs_pos.size(-1)
abs_pos_new = abs_pos.squeeze(0)
cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
tgt_size = int(math.sqrt(tgt_size))
dtype = abs_pos.dtype
if src_size != tgt_size:
old_pos_embed = (
old_pos_embed.view(1, src_size, src_size, dim)
.permute(0, 3, 1, 2)
.contiguous()
)
old_pos_embed = old_pos_embed.to(torch.float32)
new_pos_embed = F.interpolate(
old_pos_embed,
size=(tgt_size, tgt_size),
mode="bicubic",
antialias=True,
align_corners=False,
).to(dtype)
new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim)
vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0)
vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim)
return vision_pos_embed
else:
return abs_pos
def forward(
self, pixel_values: torch.Tensor, patch_embeds: torch.Tensor | None = None
) -> torch.Tensor:
batch_size = pixel_values.shape[0]
if patch_embeds is not None:
patch_embeds = patch_embeds
else:
patch_embeds = self.patch_embedding(pixel_values)
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.get_abs_pos(
self.position_embedding(self.position_ids), embeddings.size(1)
)
return embeddings
class DeepCLIPVisionTransformer(nn.Module):
def __init__(
self,
config: CLIPVisionConfig,
quant_config: QuantizationConfig | None = None,
*,
num_hidden_layers_override: int | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = DeepCLIPVisionEmbeddings(config)
# NOTE: This typo of "layrnorm" is not fixed on purpose to match
# the original transformers code and name of the model weights.
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.transformer = CLIPEncoder(
config=config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
attn_cls=MultiHeadAttention,
)
num_hidden_layers = config.num_hidden_layers
if len(self.transformer.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {num_hidden_layers} "
f"layers, but you requested {len(self.transformer.layers)} layers."
)
@property
def dtype(self):
return next(self.parameters()).dtype
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
pixel_values: torch.Tensor,
patch_embeds: torch.Tensor | None = None,
*,
select_layers: list[int] | None = None,
) -> torch.Tensor:
hidden_states = self.embeddings(pixel_values, patch_embeds)
hidden_states = self.pre_layrnorm(hidden_states)
# Produces either the last layer output or all of the hidden states,
# depending on if we have select_layers or not
encoder_outputs = self.transformer(
inputs_embeds=hidden_states,
return_all_hidden_states=select_layers is not None,
)
return encoder_outputs
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params