mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:26:00 +08:00
709 lines
26 KiB
Python
709 lines
26 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
|
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
from typing import Any
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import LlamaConfig
|
|
|
|
from vllm.attention import Attention, AttentionType
|
|
from vllm.attention.layers.encoder_only_attention import EncoderOnlyAttention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
DEFAULT_VOCAB_PADDING_SIZE,
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsEagle3, SupportsLoRA, SupportsPP
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
extract_layer_index,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class LlamaMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
prefix: str = "",
|
|
reduce_results: bool = True,
|
|
disable_tp: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
input_size=hidden_size,
|
|
output_sizes=[intermediate_size] * 2,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
disable_tp=disable_tp,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
input_size=intermediate_size,
|
|
output_size=hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results,
|
|
disable_tp=disable_tp,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
if hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
x, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(x)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class LlamaAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: LlamaConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: dict[str, Any] | None = None,
|
|
max_position_embeddings: int = 8192,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
bias_o_proj: bool = False,
|
|
cache_config: CacheConfig | None = None,
|
|
prefix: str = "",
|
|
attn_type: str = AttentionType.DECODER,
|
|
) -> None:
|
|
super().__init__()
|
|
layer_idx = extract_layer_index(prefix)
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
|
head_dim = getattr(config, "head_dim", None)
|
|
if head_dim is None:
|
|
head_dim = self.hidden_size // self.total_num_heads
|
|
self.head_dim = head_dim
|
|
# Phi models introduced a partial_rotary_factor parameter in the config
|
|
self.partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=hidden_size,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
total_num_kv_heads=self.total_num_kv_heads,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
input_size=self.total_num_heads * self.head_dim,
|
|
output_size=hidden_size,
|
|
bias=bias_o_proj,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self._init_rotary_emb(
|
|
config, rope_scaling=rope_scaling, quant_config=quant_config
|
|
)
|
|
|
|
sliding_window = None
|
|
if layer_types := getattr(config, "layer_types", None):
|
|
# Fix for Eagle3 compatibility:
|
|
# for draft models, subtract target layer count
|
|
# to get draft-relative layer index starting from 0
|
|
if hasattr(config, "target_layer_count"):
|
|
# This is a draft model,
|
|
# adjust layer_idx to be relative to draft layers
|
|
effective_layer_idx = layer_idx - config.target_layer_count
|
|
else:
|
|
# This is a target model, use layer_idx directly
|
|
effective_layer_idx = layer_idx
|
|
assert effective_layer_idx < len(layer_types), (
|
|
f"effective_layer_idx: {effective_layer_idx} \
|
|
is out of bounds for layer_types: {layer_types}"
|
|
)
|
|
|
|
is_sliding = layer_types[effective_layer_idx] == "sliding_attention"
|
|
if is_sliding:
|
|
sliding_window = config.sliding_window
|
|
|
|
attn_cls = (
|
|
EncoderOnlyAttention
|
|
if attn_type == AttentionType.ENCODER_ONLY
|
|
else Attention
|
|
)
|
|
|
|
self.attn = attn_cls(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
per_layer_sliding_window=sliding_window,
|
|
attn_type=attn_type,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
def _init_rotary_emb(
|
|
self,
|
|
config: LlamaConfig,
|
|
rope_scaling: dict[str, Any] | None,
|
|
quant_config: QuantizationConfig | None,
|
|
) -> None:
|
|
is_neox_style = True
|
|
is_gguf = quant_config and quant_config.get_name() == "gguf"
|
|
if is_gguf and config.model_type == "llama":
|
|
is_neox_style = False
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
is_neox_style=is_neox_style,
|
|
partial_rotary_factor=self.partial_rotary_factor,
|
|
)
|
|
|
|
|
|
class LlamaDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
config: LlamaConfig | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
config = config or vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = self.get_quant_config(vllm_config)
|
|
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
if rope_scaling is not None and getattr(
|
|
config, "original_max_position_embeddings", None
|
|
):
|
|
rope_scaling["original_max_position_embeddings"] = (
|
|
config.original_max_position_embeddings
|
|
)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
# Support abacusai/Smaug-72B-v0.1 with attention_bias
|
|
# Support internlm/internlm-7b with bias
|
|
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
|
config, "bias", False
|
|
)
|
|
bias_o_proj = attention_bias
|
|
# support internlm/internlm3-8b with qkv_bias
|
|
if hasattr(config, "qkv_bias"):
|
|
attention_bias = config.qkv_bias
|
|
|
|
# By default, Llama uses causal attention as it is a decoder-only model.
|
|
# You can override the HF config with `is_causal=False` to enable
|
|
# bidirectional attention, which is used in some embedding models
|
|
# (e.g. parasail-ai/GritLM-7B-vllm)
|
|
if getattr(config, "is_causal", True):
|
|
attn_type = AttentionType.DECODER
|
|
else:
|
|
attn_type = AttentionType.ENCODER_ONLY
|
|
|
|
self.self_attn = LlamaAttention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=getattr(
|
|
config, "num_key_value_heads", config.num_attention_heads
|
|
),
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
bias=attention_bias,
|
|
bias_o_proj=bias_o_proj,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
attn_type=attn_type,
|
|
)
|
|
self.mlp = LlamaMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
bias=getattr(config, "mlp_bias", False),
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
|
|
"""Get quantization config for this layer. Override in subclasses."""
|
|
return vllm_config.quant_config
|
|
|
|
|
|
@support_torch_compile
|
|
class LlamaModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[nn.Module] = LlamaDecoderLayer,
|
|
):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
lora_vocab = (
|
|
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
|
|
if lora_config
|
|
else 0
|
|
)
|
|
self.vocab_size = config.vocab_size + lora_vocab
|
|
self.org_vocab_size = config.vocab_size
|
|
if get_pp_group().is_first_rank or (
|
|
config.tie_word_embeddings and get_pp_group().is_last_rank
|
|
):
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
quant_config=quant_config,
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: layer_type(vllm_config=vllm_config, prefix=prefix),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
|
|
self.aux_hidden_state_layers = tuple[int, ...]()
|
|
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
aux_hidden_states = []
|
|
for idx, layer in enumerate(
|
|
islice(self.layers, self.start_layer, self.end_layer)
|
|
):
|
|
if idx in self.aux_hidden_state_layers:
|
|
aux_hidden_states.append(hidden_states + residual)
|
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
|
|
if len(aux_hidden_states) > 0:
|
|
return hidden_states, aux_hidden_states
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
|
# Models trained using ColossalAI may include these tensors in
|
|
# the checkpoint. Skip them.
|
|
continue
|
|
if self.quant_config is not None and (
|
|
scale_name := self.quant_config.get_cache_scale(name)
|
|
):
|
|
# Loading kv cache quantization scales
|
|
param = params_dict[scale_name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
loaded_weight = (
|
|
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(scale_name)
|
|
continue
|
|
if "scale" in name:
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class LlamaForCausalLM(nn.Module, SupportsLoRA, SupportsPP, SupportsEagle3):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
embedding_modules = {
|
|
"embed_tokens": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
embedding_padding_modules = ["lm_head"]
|
|
|
|
# Mistral/Llama models can also be loaded with --load-format mistral
|
|
# from consolidated.safetensors checkpoints
|
|
mistral_mapping = {
|
|
"layers": "model.layers",
|
|
"attention": "self_attn",
|
|
"qscale_act": "input_scale",
|
|
"qscale_weight": "weight_scale",
|
|
"kv_fake_quantizer.qscale_act": "kv_scale",
|
|
"q_fake_quantizer.qscale_act": "attn.q_scale",
|
|
"k_fake_quantizer.qscale_act": "k_scale",
|
|
"v_fake_quantizer.qscale_act": "v_scale",
|
|
"wq": "q_proj",
|
|
"wk": "k_proj",
|
|
"wv": "v_proj",
|
|
"wo": "o_proj",
|
|
"attention_norm": "input_layernorm",
|
|
"feed_forward": "mlp",
|
|
"w1": "gate_proj",
|
|
"w2": "down_proj",
|
|
"w3": "up_proj",
|
|
"ffn_norm": "post_attention_layernorm",
|
|
"tok_embeddings": "model.embed_tokens",
|
|
"output": "lm_head",
|
|
"norm": "model.norm",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[nn.Module] = LlamaDecoderLayer,
|
|
):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
self.config = config
|
|
self.lora_config = lora_config
|
|
|
|
self.model = self._init_model(
|
|
vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"),
|
|
layer_type=layer_type,
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
if lora_config:
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
self.lm_head = ParallelLMHead(
|
|
self.unpadded_vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
padding_size=(
|
|
DEFAULT_VOCAB_PADDING_SIZE
|
|
# We need bigger padding if using lora for kernel
|
|
# compatibility
|
|
if not lora_config
|
|
else lora_config.lora_vocab_padding_size
|
|
),
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if config.tie_word_embeddings:
|
|
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
|
|
|
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(
|
|
self.unpadded_vocab_size, config.vocab_size, logit_scale
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
|
|
self.model.aux_hidden_state_layers = layers
|
|
|
|
def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
|
|
"""Override to return default layers for Llama
|
|
|
|
Note: The GPU model runner will override this with layers from
|
|
the speculative config if available, providing dynamic configuration.
|
|
"""
|
|
num_layers = len(self.model.layers)
|
|
return (2, num_layers // 2, num_layers - 3)
|
|
|
|
def _init_model(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[nn.Module] = LlamaDecoderLayer,
|
|
):
|
|
return LlamaModel(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
model_output = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return model_output
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(
|
|
self.maybe_remap_mistral(name, loaded_weight)
|
|
for name, loaded_weight in weights
|
|
)
|
|
|
|
# This function is used to remap the mistral format as
|
|
# used by Mistral and Llama <=2
|
|
def maybe_remap_mistral(
|
|
self,
|
|
name: str,
|
|
loaded_weight: torch.Tensor,
|
|
) -> tuple[str, torch.Tensor]:
|
|
def permute(w: torch.Tensor, n_heads: int, attn_out: int):
|
|
attn_in = self.config.head_dim * n_heads
|
|
|
|
return (
|
|
w.view(n_heads, attn_in // n_heads // 2, 2, attn_out)
|
|
.transpose(1, 2)
|
|
.reshape(attn_in, attn_out)
|
|
)
|
|
|
|
mapping = self.mistral_mapping
|
|
modules = name.split(".")
|
|
|
|
# rotary embeds should be sliced
|
|
# If using quantized model in mistral format,
|
|
# quantization scales (qscale_weight) also need to be sliced
|
|
if "wk" in modules and modules[-1] == "weight":
|
|
loaded_weight = permute(
|
|
loaded_weight, self.config.num_key_value_heads, self.config.hidden_size
|
|
)
|
|
elif (
|
|
"wk" in modules
|
|
and modules[-1] == "qscale_weight"
|
|
and loaded_weight.numel() > 1
|
|
):
|
|
loaded_weight = permute(loaded_weight, self.config.num_key_value_heads, 1)
|
|
elif "wq" in modules and modules[-1] == "weight":
|
|
loaded_weight = permute(
|
|
loaded_weight, self.config.num_attention_heads, self.config.hidden_size
|
|
)
|
|
elif (
|
|
"wq" in modules
|
|
and modules[-1] == "qscale_weight"
|
|
and loaded_weight.numel() > 1
|
|
):
|
|
loaded_weight = permute(loaded_weight, self.config.num_attention_heads, 1)
|
|
|
|
num_modules = len(modules)
|
|
for i in range(num_modules):
|
|
item = modules[i]
|
|
next_item = modules[i + 1] if i < num_modules - 1 else None
|
|
|
|
combined_item = f"{item}.{next_item}" if next_item is not None else None
|
|
|
|
if combined_item in mapping:
|
|
name = name.replace(combined_item, mapping[combined_item])
|
|
elif item in mapping and mapping[item] not in name:
|
|
name = name.replace(item, mapping[item])
|
|
|
|
return name, loaded_weight
|