mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:44:57 +08:00
189 lines
6.9 KiB
Python
189 lines
6.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import LlamaConfig
|
|
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed.parallel_state import get_pp_group
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.llama import LlamaDecoderLayer, LlamaForCausalLM
|
|
|
|
from .utils import AutoWeightsLoader, maybe_prefix
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class LlamaDecoderLayer(LlamaDecoderLayer):
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
disable_input_layernorm: bool,
|
|
prefix: str = "",
|
|
config: LlamaConfig | None = None,
|
|
) -> None:
|
|
super().__init__(vllm_config, prefix=prefix, config=config)
|
|
|
|
# Skip the input_layernorm
|
|
# https://github.com/SafeAILab/EAGLE/blob/35c78f6cdc19a73e05cf5c330b4c358dad970c6a/eagle/model/cnets.py#L427
|
|
if disable_input_layernorm:
|
|
del self.input_layernorm
|
|
self.input_layernorm = nn.Identity()
|
|
|
|
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
|
|
"""Use drafter's quantization config instead of verifier's."""
|
|
draft_model_config = vllm_config.speculative_config.draft_model_config
|
|
draft_load_config = vllm_config.load_config
|
|
|
|
return (
|
|
VllmConfig.get_quantization_config(draft_model_config, draft_load_config)
|
|
if draft_model_config
|
|
else None
|
|
)
|
|
|
|
|
|
@support_torch_compile
|
|
class LlamaModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
start_layer_id: int = 0,
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
self.vocab_size = self.config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "embed_tokens"),
|
|
)
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
LlamaDecoderLayer(
|
|
vllm_config,
|
|
i == 0,
|
|
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
|
|
config=self.config,
|
|
)
|
|
for i in range(self.config.num_hidden_layers)
|
|
]
|
|
)
|
|
self.fc = torch.nn.Linear(
|
|
self.config.hidden_size * 2, self.config.hidden_size, bias=False
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
input_embeds = self.embed_tokens(input_ids)
|
|
hidden_states = self.fc(torch.cat((input_embeds, hidden_states), dim=-1))
|
|
residual = None
|
|
for layer in self.layers:
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
residual,
|
|
)
|
|
hidden_states = hidden_states + residual
|
|
return hidden_states, hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# if PP disabled then draft will share embed with target
|
|
if get_pp_group().world_size == 1 and "embed_tokens." in name:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class EagleLlamaForCausalLM(LlamaForCausalLM):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
nn.Module.__init__(self)
|
|
self.config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
# Ensure draft_vocab_size is set
|
|
# default to the base vocab size when absent
|
|
if getattr(self.config, "draft_vocab_size", None) is None:
|
|
base_vocab_size = getattr(self.config, "vocab_size", None)
|
|
self.config.draft_vocab_size = base_vocab_size
|
|
target_layer_num = vllm_config.model_config.get_num_layers(
|
|
vllm_config.parallel_config
|
|
)
|
|
self.model = LlamaModel(
|
|
vllm_config=vllm_config, prefix="model", start_layer_id=target_layer_num
|
|
)
|
|
|
|
logit_scale = getattr(self.config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(
|
|
self.config.vocab_size, scale=logit_scale
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if inputs_embeds is not None:
|
|
raise NotImplementedError(
|
|
f"{type(self).__name__} does not support multimodal inputs yet."
|
|
)
|
|
return self.model(input_ids, positions, hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
def transform(inputs):
|
|
name, loaded_weight = inputs
|
|
if "lm_head" not in name:
|
|
name = "model." + name
|
|
return name, loaded_weight
|
|
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=None,
|
|
)
|
|
loader.load_weights(map(transform, weights))
|