mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:44:57 +08:00
553 lines
20 KiB
Python
553 lines
20 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2025 The MiniMax AI team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only MiniMaxM2 model."""
|
|
|
|
from collections.abc import Iterable
|
|
from typing import Any
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
|
from vllm.distributed import (
|
|
get_pp_group,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce,
|
|
)
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.mamba.linear_attn import MiniMaxText01RMSNormTP
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsPP
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class MiniMaxM2MoE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
if self.tp_size > config.num_local_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {config.num_local_experts}."
|
|
)
|
|
self.use_routing_bias = getattr(config, "use_routing_bias", False)
|
|
if self.use_routing_bias:
|
|
self.e_score_correction_bias = nn.Parameter(
|
|
torch.empty(config.num_local_experts, dtype=torch.float32)
|
|
)
|
|
self.e_score_correction_bias.weight_loader = (
|
|
MiniMaxM2MoE.ebias_weight_loader
|
|
)
|
|
else:
|
|
self.e_score_correction_bias = None
|
|
|
|
self.experts = FusedMoE(
|
|
num_experts=config.num_local_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
scoring_func=config.scoring_func,
|
|
use_grouped_topk=True,
|
|
num_expert_group=1,
|
|
topk_group=1,
|
|
e_score_correction_bias=self.e_score_correction_bias,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.experts",
|
|
)
|
|
|
|
self.gate = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.num_local_experts,
|
|
bias=False,
|
|
params_dtype=torch.float32,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
|
|
@staticmethod
|
|
def ebias_weight_loader(param: nn.Parameter, loaded_weight: torch.Tensor) -> None:
|
|
assert param.size() == loaded_weight.size()
|
|
param.data.copy_(loaded_weight.to(torch.float32))
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states.to(torch.float32))
|
|
final_hidden_states = self.experts(
|
|
hidden_states=hidden_states, router_logits=router_logits
|
|
)
|
|
final_hidden_states = final_hidden_states
|
|
if self.tp_size > 1:
|
|
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
|
|
|
|
return final_hidden_states.view(num_tokens, hidden_dim)
|
|
|
|
|
|
class MiniMaxM2Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
rotary_dim: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: dict[str, Any] | None = None,
|
|
attn_window_size: int | None = None,
|
|
max_position_embeddings: int = 8192,
|
|
head_dim: int | None = None,
|
|
rms_norm_eps: float = 1e-06,
|
|
qkv_bias: bool = False,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=qkv_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=rotary_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
per_layer_sliding_window=attn_window_size,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
self.q_norm = MiniMaxText01RMSNormTP(
|
|
self.head_dim * self.total_num_heads, eps=rms_norm_eps
|
|
)
|
|
self.k_norm = MiniMaxText01RMSNormTP(
|
|
self.head_dim * self.total_num_kv_heads, eps=rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q = self.q_norm(q)
|
|
k = self.k_norm(k)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class MiniMaxM2DecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
model_config: ModelConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
if hasattr(config, "max_model_len") and isinstance(config.max_model_len, int):
|
|
max_position_embeddings = max(
|
|
config.max_position_embeddings, config.max_model_len
|
|
)
|
|
# DecoderLayers are created with `make_layers` which passes the prefix
|
|
# with the layer's index.
|
|
layer_idx = int(prefix.split(sep=".")[-1])
|
|
|
|
self.layer_idx = layer_idx
|
|
self.self_attn = MiniMaxM2Attention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
rotary_dim=config.rotary_dim,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
rms_norm_eps=config.rms_norm_eps,
|
|
qkv_bias=getattr(config, "attention_bias", False),
|
|
head_dim=getattr(config, "head_dim", None),
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
self.block_sparse_moe = MiniMaxM2MoE(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> torch.Tensor:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.block_sparse_moe(hidden_states)
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class MiniMaxM2Model(nn.Module):
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
model_config = vllm_config.model_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
if get_pp_group().is_first_rank:
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.embed_tokens",
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: MiniMaxM2DecoderLayer(
|
|
config,
|
|
prefix,
|
|
model_config=model_config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for layer in self.layers[self.start_layer : self.end_layer]:
|
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
return FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="w1",
|
|
ckpt_down_proj_name="w2",
|
|
ckpt_up_proj_name="w3",
|
|
num_experts=self.config.num_local_experts,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = self.get_expert_mapping()
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
|
|
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
|
|
if spec_layer is not None:
|
|
continue # skip spec decode layers for main model
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if ("mlp.experts." in name) and name not in params_dict:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class MiniMaxM2ForCausalLM(nn.Module, SupportsPP):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
if hasattr(vllm_config.model_config, "max_model_len"):
|
|
self.config.max_model_len = vllm_config.model_config.max_model_len
|
|
self.model = MiniMaxM2Model(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size, config.hidden_size, quant_config=None
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
return self.model.get_expert_mapping()
|
|
|
|
|
|
def get_spec_layer_idx_from_weight_name(
|
|
config: PretrainedConfig, weight_name: str
|
|
) -> int | None:
|
|
if hasattr(config, "num_mtp_modules") and (config.num_mtp_modules > 0):
|
|
layer_idx = config.num_hidden_layers
|
|
for i in range(config.num_mtp_modules):
|
|
if weight_name.startswith(f"model.layers.{layer_idx + i}."):
|
|
return layer_idx + i
|
|
return None
|