vllm/vllm/model_executor/models/minimax_m2.py
Roger Young d6704dd099
Fix MiniMax-M2 rmsnorm precision and remove useless code (#27627)
Signed-off-by: xuebi <xuebi@minimaxi.com>
Co-authored-by: xuebi <xuebi@minimaxi.com>
2025-10-29 21:01:05 +08:00

553 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 The MiniMax AI team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only MiniMaxM2 model."""
from collections.abc import Iterable
from typing import Any
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import (
get_pp_group,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.linear_attn import MiniMaxText01RMSNormTP
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class MiniMaxM2MoE(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
if self.tp_size > config.num_local_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.num_local_experts}."
)
self.use_routing_bias = getattr(config, "use_routing_bias", False)
if self.use_routing_bias:
self.e_score_correction_bias = nn.Parameter(
torch.empty(config.num_local_experts, dtype=torch.float32)
)
self.e_score_correction_bias.weight_loader = (
MiniMaxM2MoE.ebias_weight_loader
)
else:
self.e_score_correction_bias = None
self.experts = FusedMoE(
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
scoring_func=config.scoring_func,
use_grouped_topk=True,
num_expert_group=1,
topk_group=1,
e_score_correction_bias=self.e_score_correction_bias,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
reduce_results=False,
renormalize=True,
quant_config=quant_config,
prefix=f"{prefix}.experts",
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.num_local_experts,
bias=False,
params_dtype=torch.float32,
quant_config=None,
prefix=f"{prefix}.gate",
)
@staticmethod
def ebias_weight_loader(param: nn.Parameter, loaded_weight: torch.Tensor) -> None:
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight.to(torch.float32))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states.to(torch.float32))
final_hidden_states = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
final_hidden_states = final_hidden_states
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_dim)
class MiniMaxM2Attention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rotary_dim: int,
rope_theta: float = 10000,
rope_scaling: dict[str, Any] | None = None,
attn_window_size: int | None = None,
max_position_embeddings: int = 8192,
head_dim: int | None = None,
rms_norm_eps: float = 1e-06,
qkv_bias: bool = False,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
per_layer_sliding_window=attn_window_size,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
self.q_norm = MiniMaxText01RMSNormTP(
self.head_dim * self.total_num_heads, eps=rms_norm_eps
)
self.k_norm = MiniMaxText01RMSNormTP(
self.head_dim * self.total_num_kv_heads, eps=rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class MiniMaxM2DecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
model_config: ModelConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
if hasattr(config, "max_model_len") and isinstance(config.max_model_len, int):
max_position_embeddings = max(
config.max_position_embeddings, config.max_model_len
)
# DecoderLayers are created with `make_layers` which passes the prefix
# with the layer's index.
layer_idx = int(prefix.split(sep=".")[-1])
self.layer_idx = layer_idx
self.self_attn = MiniMaxM2Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rotary_dim=config.rotary_dim,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
rms_norm_eps=config.rms_norm_eps,
qkv_bias=getattr(config, "attention_bias", False),
head_dim=getattr(config, "head_dim", None),
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.block_sparse_moe = MiniMaxM2MoE(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.block_sparse_moe(hidden_states)
return hidden_states, residual
@support_torch_compile
class MiniMaxM2Model(nn.Module):
fall_back_to_pt_during_load = False
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.vocab_size = config.vocab_size
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=None,
prefix=f"{prefix}.embed_tokens",
)
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: MiniMaxM2DecoderLayer(
config,
prefix,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
),
prefix=f"{prefix}.layers",
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer : self.end_layer]:
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="w1",
ckpt_down_proj_name="w2",
ckpt_up_proj_name="w3",
num_experts=self.config.num_local_experts,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = self.get_expert_mapping()
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
if spec_layer is not None:
continue # skip spec decode layers for main model
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if ("mlp.experts." in name) and name not in params_dict:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class MiniMaxM2ForCausalLM(nn.Module, SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
if hasattr(vllm_config.model_config, "max_model_len"):
self.config.max_model_len = vllm_config.model_config.max_model_len
self.model = MiniMaxM2Model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
config.vocab_size, config.hidden_size, quant_config=None
)
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor | IntermediateTensors:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()
def get_spec_layer_idx_from_weight_name(
config: PretrainedConfig, weight_name: str
) -> int | None:
if hasattr(config, "num_mtp_modules") and (config.num_mtp_modules > 0):
layer_idx = config.num_hidden_layers
for i in range(config.num_mtp_modules):
if weight_name.startswith(f"model.layers.{layer_idx + i}."):
return layer_idx + i
return None