Cyrus Leung 879a06579e
[CI/Build] Bump transformers version (#27528)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-31 22:11:07 -07:00

678 lines
24 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# ruff: noqa: E501
# Adapted from https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct/blob/main/modeling_kimi_vl.py
# This file is meant to be used in kimi_vl.py only
# Copyright 2025 The Moonshot AI Team, DeepSeek-AI, and HuggingFace Inc. team. All rights reserved.
#
# The code is based on llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py), but modified for KimiVL.
#
# Licensing Information:
# - Code derived from llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py) is licensed under the Apache License, Version 2.0.
# - Other parts of the code are licensed under the MIT License.
#
# Apache License, Version 2.0:
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# MIT License:
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from collections.abc import Sequence
from copy import deepcopy
from functools import cached_property
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.models.utils import maybe_prefix
from vllm.transformers_utils.configs.moonvit import MoonViTConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_varlen_func
else:
flash_attn_varlen_func = None
def multihead_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_cu_seqlens: torch.Tensor | None = None,
k_cu_seqlens: torch.Tensor | None = None,
) -> torch.Tensor:
"""Multi-head attention using flash attention 2.
Args:
q: Query tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
k: Key tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
v: Value tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q.
The first element should be 0 and the last element should be q.shape[0].
k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k.
The first element should be 0 and the last element should be k.shape[0].
Returns:
output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing,
where dim = num_heads * head_dim
"""
# Unified format legal check
assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims"
assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]"
assert k_cu_seqlens[-1] == k.shape[0] == v.shape[0], (
"k_cu_seqlens must sum to k.shape[0]"
)
assert q.dtype in [
torch.bfloat16,
torch.float16,
], f"unsupported dtype {q.dtype} for multihead attn"
max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item()
max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item()
attn_out = flash_attn_varlen_func(
q,
k,
v,
q_cu_seqlens,
k_cu_seqlens,
max_seqlen_q,
max_seqlen_k,
causal=False,
)
attn_out = attn_out.flatten(start_dim=-2)
return attn_out
def sdpa_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_cu_seqlens: torch.Tensor | None = None,
k_cu_seqlens: torch.Tensor | None = None,
) -> torch.Tensor:
"""SDPA attention.
Args:
q: Query tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
k: Key tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
v: Value tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
q_cu_seqlens: Optional cumulative sequence lengths of q.
k_cu_seqlens: Optional cumulative sequence lengths of k.
"""
seq_length = q.shape[0]
attention_mask = torch.zeros(
[1, seq_length, seq_length], device=q.device, dtype=torch.bool
)
for i in range(1, len(q_cu_seqlens)):
attention_mask[
...,
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
] = True
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
return attn_output
VL_VISION_ATTENTION_FUNCTIONS = {
"flash_attention_2": multihead_attention,
"sdpa": sdpa_attention,
}
def _apply_rope_input_validation(x, freqs_cis):
assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape)
assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape)
assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape)
assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype
def apply_rope(
xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Args: (The leading dimensions of all inputs should be the same)
xq: query, tensor of shape (..., num_heads, head_dim)
xk: key, tensor of shape (..., num_heads, head_dim)
freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid.
Returns:
xq_out, xk_out: tensors of shape (..., num_heads, head_dim)
"""
_apply_rope_input_validation(xq, freqs_cis)
_apply_rope_input_validation(xk, freqs_cis)
freqs_cis = freqs_cis.unsqueeze(-2) # ..., 1, head_dim/2
# ..., num_heads, head_dim/2
xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2))
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
return xq_out.type_as(xq), xk_out.type_as(xk)
class Learnable2DInterpPosEmb(nn.Module):
def __init__(
self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic"
) -> None:
super().__init__()
self.height = height
self.width = width
self.interpolation_mode = interpolation_mode
self.weight = nn.Parameter(torch.empty(height, width, dim))
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weight)
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
pos_embs = []
for shape in grid_hws.tolist():
if shape == self.weight.shape[:-1]:
pos_embs.append(self.weight.flatten(end_dim=1))
else:
pos_embs.append(
F.interpolate(
self.weight.permute((2, 0, 1)).unsqueeze(0),
size=shape,
mode=self.interpolation_mode,
)
.squeeze(0)
.permute((1, 2, 0))
.flatten(end_dim=1)
)
out = x + torch.cat(pos_embs)
return out
class MoonVisionPatchEmbed(nn.Module):
def __init__(
self,
out_dim: int,
in_dim: int = 3,
patch_size: int | tuple[int, int] = (14, 14),
pos_emb_height: int = 14,
pos_emb_width: int = 14,
):
super().__init__()
assert isinstance(patch_size, (int, Sequence)), (
f"Invalid patch_size type: {type(patch_size)}"
)
if isinstance(patch_size, int):
patch_size = (patch_size, patch_size)
assert len(patch_size) == 2, (
f"Expected patch_size to be a tuple of 2, got {patch_size}"
)
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_dim, out_dim, kernel_size=patch_size, stride=patch_size
)
self.pos_emb = Learnable2DInterpPosEmb(
height=pos_emb_height, width=pos_emb_width, dim=out_dim
)
def forward(self, x: torch.Tensor, grid_hw: torch.Tensor) -> torch.Tensor:
"""
Args:
x (L, Channels): input tensor
grid_hw (N, 2): grid height and width
Returns:
(L, Cout) tensor
"""
x = self.proj(x).view(x.size(0), -1)
# apply positional embedding
x = self.pos_emb(x, grid_hw)
return x
class Rope2DPosEmb(nn.Module):
"""2D rotary position embedding with multi-resolution support.
This class is intended to be used in the following way:
1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis.
2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration.
3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation.
The rope is shared across all attention layers and all heads.
Refs:
- RoFormer: https://arxiv.org/abs/2104.09864
- VisionLLaMA: https://arxiv.org/abs/2403.00522
- https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py
Args:
dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed)
max_height (int): the maximum height of the 2D grid
max_width (int): the maximum width of the 2D grid
theta_base (float): the base of the theta
device (str): the device to store the precomputed cis
"""
def __init__(
self, dim: int, max_height: int, max_width: int, theta_base=10000, device="cuda"
):
super().__init__()
self.dim = dim
assert self.dim % 4 == 0, "dim must be divisible by 4"
self.max_height = max_height
self.max_width = max_width
self.theta_base = theta_base
self.device = device
def extra_repr(self):
return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}"
@cached_property
def precomputed_freqs_cis(self) -> torch.Tensor:
"""Calculate the cis(freqs) for each position in the 2D grid.
Return: complex tensor of shape (max_height, max_width, dim//2) and value:
height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim))
weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4))
note: `cis` is a mathematical notation defined by cis x = cos x + i sin x,
"""
N = self.max_height * self.max_width
flat_pos = torch.arange(0, N).float().to(self.device)
x_pos = flat_pos % self.max_width
y_pos = flat_pos // self.max_width
dim_range = (
torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(self.device)
) # C/4
freqs = 1.0 / (self.theta_base ** (dim_range / self.dim))
x_freqs = torch.outer(x_pos, freqs).float() # N, C/4
y_freqs = torch.outer(y_pos, freqs).float() # N, C/4
x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) # N, C/4
y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) # N, C/4
# N, C/4, 2
freqs_cis = torch.cat(
[x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1
)
# max_height, max_width, C/2
freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1)
return freqs_cis
def get_freqs_cis_by_seqlens(self, grid_hws: torch.Tensor) -> torch.Tensor:
"""
Args:
grid_hws (torch.Tensor): containing list of (height, width) or (t, height, width) tuples.
Returns:
freqs_cis: tensor of shape (sum(t * height * width), dim//2)
"""
shapes = grid_hws.tolist()
assert all(
1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes
), (
shapes,
self.max_height,
self.max_width,
)
freqs_cis = torch.cat(
[
self.precomputed_freqs_cis[:h, :w].reshape(-1, self.dim // 2)
for h, w in shapes
],
dim=0,
)
return freqs_cis
def get_freqs_cis_by_idx(
self, pos_idx: torch.Tensor, pos_idx_mask: torch.Tensor
) -> torch.Tensor:
"""
Args:
pos_idx: tensor of shape (..., 2), It contains the (h, w) position indices of each 2D token.
pos_idx_mask: a mask of shape (...), the leading dimensions should be the same as pos_idx.
Rope will only be applied to the tokens with True mask. `freqs_cis` for the tokens with False mask with be ones.
Return:
freqs_cis: tensor of shape (..., dim//2)
"""
assert (
pos_idx.shape[:-1] == pos_idx_mask.shape
and pos_idx.shape[-1] == 2
and pos_idx.ndim == pos_idx_mask.ndim + 1
), (pos_idx.shape, pos_idx_mask.shape)
assert pos_idx_mask.dtype == torch.bool, pos_idx_mask.dtype
shp = pos_idx_mask.shape + (self.dim // 2,) # ..., head_dim/2
freqs_cis = torch.ones(
shp, dtype=torch.complex64, device=self.device
) # ..., head_dim/2
freqs_cis[pos_idx_mask] = self.precomputed_freqs_cis[
pos_idx[..., 0][pos_idx_mask], pos_idx[..., 1][pos_idx_mask]
]
return freqs_cis
class MLP2(nn.Module):
"""
Args:
dims: [in_dim, hidden_dim, out_dim]
bias: whether to use bias in linear layer.
"""
def __init__(
self,
dims: list[int],
activation,
bias: bool = True,
prefix: str = "",
use_data_parallel: bool = False,
):
super().__init__()
assert len(dims) == 3
self.use_data_parallel = use_data_parallel
self.fc0 = ReplicatedLinear(
dims[0], dims[1], bias=bias, prefix=maybe_prefix(prefix, "fc0")
)
self.fc1 = ReplicatedLinear(
dims[1], dims[2], bias=bias, prefix=maybe_prefix(prefix, "fc1")
)
self.activation = activation
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.fc0(x)
x = self.activation(x)
x, _ = self.fc1(x)
return x
class MoonVitEncoderLayer(nn.Module):
def __init__(
self,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
prefix: str = "",
use_data_parallel: bool = False,
*,
attn_implementation: str = "sdpa",
activation=F.gelu,
attn_bias: bool = False,
):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads
self.attn_implementation = attn_implementation
# use fa2 in vllm by default
if is_flash_attn_2_available():
self.attn_implementation = "flash_attention_2"
self.norm0 = nn.LayerNorm(hidden_dim)
self.norm1 = nn.LayerNorm(hidden_dim)
self.use_data_parallel = use_data_parallel
self.mlp = MLP2(
[hidden_dim, mlp_dim, hidden_dim],
activation,
prefix=f"{prefix}.mlp",
use_data_parallel=use_data_parallel,
)
self.wqkv = ReplicatedLinear(
hidden_dim, hidden_dim * 3, bias=attn_bias, prefix=f"{prefix}.wqkv"
)
self.wo = ReplicatedLinear(
hidden_dim, hidden_dim, bias=attn_bias, prefix=f"{prefix}.wo"
)
def attention_qkvpacked(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
rope_freqs_cis: torch.Tensor | None = None,
):
"""
Args:
x (torch.Tensor): (batch_size, seqlen, hidden_dim)
cu_seqlens (torch.Tensor):
"""
xqkv, _ = self.wqkv(x)
qkv_shape = xqkv.size()[:-1] + (
3,
self.num_heads,
self.hidden_size_per_attention_head,
)
# xqkv: (batch_size, seqlen, 3, nheads, headdim)
xqkv = xqkv.view(*qkv_shape)
xq, xk, xv = torch.unbind(xqkv, dim=-3)
xq, xk = apply_rope(xq, xk, rope_freqs_cis)
attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation]
attn_out = attn_func(
xq, xk, xv, q_cu_seqlens=cu_seqlens, k_cu_seqlens=cu_seqlens
)
attn_out, _ = self.wo(attn_out)
return attn_out
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rope_freqs_cis: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Args:
hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set
Returns:
output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input
"""
residual = hidden_states
hidden_states = self.norm0(hidden_states)
attn_out = self.attention_qkvpacked(
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
)
hidden_states = residual + attn_out
residual = hidden_states
hidden_states = self.mlp(self.norm1(hidden_states))
hidden_states = residual + hidden_states
return hidden_states
class MoonVitEncoder(nn.Module):
def __init__(
self,
hidden_dim: int,
num_layers: int,
block_cfg: dict,
prefix: str = "",
use_data_parallel: bool = False,
) -> None:
super().__init__()
self.rope_2d = Rope2DPosEmb(
block_cfg["hidden_dim"] // block_cfg["num_heads"], 512, 512
)
self.blocks = nn.ModuleList(
[
MoonVitEncoderLayer(
use_data_parallel=use_data_parallel,
prefix=f"{prefix}.blocks.{layer_idx}",
**block_cfg,
)
for layer_idx in range(num_layers)
]
)
self.final_layernorm = nn.LayerNorm(hidden_dim)
def forward(
self, hidden_states: torch.Tensor, grid_hw: torch.Tensor
) -> torch.Tensor:
rope_freqs_cis = self.rope_2d.get_freqs_cis_by_seqlens(grid_hws=grid_hw)
lengths = torch.cat(
(
torch.zeros(1, device=hidden_states.device, dtype=grid_hw.dtype),
(grid_hw[:, 0] * grid_hw[:, 1]).to(hidden_states.device),
)
)
cu_seqlens = lengths.cumsum(dim=0, dtype=torch.int32)
for _, block in enumerate(self.blocks):
hidden_states = block(
hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis
)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
def patch_merger(
x: torch.Tensor,
grid_hw: torch.Tensor,
merge_kernel_size: list[int, int] = (2, 2),
) -> list[torch.Tensor]:
d_model = x.size(-1)
outputs = []
pre_sum = 0
for x_shape in grid_hw.tolist():
height, width = x_shape[0], x_shape[1]
# Get the current sequence
seq = x[pre_sum : pre_sum + height * width]
# Reshape along self.merge_kernel_size and concat to the last dimension
kernel_height, kernel_width = merge_kernel_size
new_height, new_width = height // kernel_height, width // kernel_width
reshaped_seq = seq.view(
new_height, kernel_height, new_width, kernel_width, d_model
)
reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous()
padded_seq = reshaped_seq.view(
new_height * new_width, kernel_height * kernel_width, -1
)
outputs.append(padded_seq)
pre_sum += height * width
return outputs
class MoonVitVLProjector(nn.Module):
def __init__(
self,
in_channels: int,
merge_kernel_size: list[int, int],
hidden_act: str = "gelu",
ln_eps: float = 1e-5,
out_dim: int = 4096,
):
super().__init__()
self.hidden_size = in_channels * merge_kernel_size[0] * merge_kernel_size[1]
self.pre_norm = nn.nn.LayerNorm(in_channels, eps=ln_eps)
self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.act = ACT2FN[hidden_act]
self.linear_2 = nn.Linear(self.hidden_size, out_dim, bias=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.pre_norm(hidden_states).view(-1, self.hidden_size)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class MoonVitPretrainedModel(PreTrainedModel):
config_class = MoonViTConfig
model_type = "moonvit"
_no_split_modules = ["PackingTransformer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(
self,
config: MoonViTConfig,
use_data_parallel: bool = False,
prefix: str = "",
*inputs,
**kwargs,
):
super().__init__(config, *inputs, **kwargs)
config = deepcopy(config)
self.use_data_parallel = use_data_parallel
self.merge_kernel_size = config.merge_kernel_size
self.hidden_size = config.hidden_size
self.patch_size = config.patch_size
self.vit_processing_type = "rope_2d"
self.patch_embed = MoonVisionPatchEmbed(
out_dim=config.hidden_size,
patch_size=config.patch_size,
pos_emb_height=config.init_pos_emb_height,
pos_emb_width=config.init_pos_emb_width,
)
self.encoder = MoonVitEncoder(
hidden_dim=config.hidden_size,
num_layers=config.num_hidden_layers,
block_cfg={
"num_heads": config.num_attention_heads,
"hidden_dim": config.hidden_size,
"mlp_dim": config.intermediate_size,
"activation": ACT2FN["gelu_pytorch_tanh"],
"attn_bias": True,
"attn_implementation": config._attn_implementation,
},
prefix=f"{prefix}.encoder",
)
def forward(
self, pixel_values: torch.Tensor, grid_hw: torch.Tensor
) -> torch.Tensor:
"""
Args:
pixel_values (torch.Tensor): The input pixel values.
grid_hw (torch.Tensor): The grid height and width.
Returns:
torch.Tensor: The output tokens.
"""
hidden_states = self.patch_embed(pixel_values, grid_hw)
hidden_states = self.encoder(hidden_states, grid_hw)
hidden_states = patch_merger(
hidden_states, grid_hw, merge_kernel_size=self.merge_kernel_size
)
return hidden_states