vllm/vllm/model_executor/models/step3_text.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

570 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only Jurassic model."""
from collections.abc import Iterable
from itertools import islice
from typing import Any
import torch
from torch import nn
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import (
get_pp_group,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (
PPMissingLayer,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
logger = init_logger(__name__)
class FusedMoEBlock(nn.Module):
def __init__(
self,
config: ModelConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
if self.tp_size > config.moe_num_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.moe_num_experts}."
)
self.experts = FusedMoE(
num_experts=config.moe_num_experts,
top_k=config.moe_top_k,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_expert_weight,
quant_config=quant_config,
prefix=f"{prefix}.experts",
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.moe_num_experts,
bias=False,
quant_config=None,
prefix=f"{prefix}.gate",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_shape = hidden_states.shape
hidden_dim = hidden_states.shape[-1]
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(orig_shape)
class Step3TextMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
)
self.act_fn = SiluAndMul()
self.hidden_size = hidden_size
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(hidden_states)
intermediate_act = self.act_fn(gate_up)
output, _ = self.down_proj(intermediate_act)
return output
class Step3TextAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
norm_eps: float,
rope_theta: int,
share_q_dim: int | None = None,
rope_scaling: dict[str, Any] | None = None,
max_position_embedding: int = 8192,
head_dim: int = 256,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
if num_kv_heads != 1:
raise ValueError(
f"Step3TextAttention num_kv_heads must be 1, but got {num_kv_heads}."
)
self.num_kv_heads = num_kv_heads
self.head_dim = head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.q_size = share_q_dim if share_q_dim else self.head_dim
self.qkv_proj = ReplicatedLinear(
hidden_size,
self.q_size + self.kv_size * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.inter_norm = RMSNorm(self.q_size, eps=norm_eps)
self.wq = ColumnParallelLinear(
self.q_size,
self.head_dim * self.total_num_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wq",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embedding,
base=rope_theta,
rope_scaling=rope_scaling,
)
scaling = self.head_dim**-0.5
self.attn = Attention(
self.num_heads,
self.head_dim,
scaling,
self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
def forward(
self, positions: torch.Tensor, hidden_states: torch.Tensor
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = self.inter_norm(q)
q = self.wq(q)[0]
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
residual, _ = self.o_proj(attn_output)
return residual
class Step3TextDecoderLayer(nn.Module):
def __init__(
self,
config: ModelConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
config = config.hf_config
self.hidden_size = config.hidden_size
rope_scaling = getattr(config, "rope_scaling", None)
self.self_attn = Step3TextAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=1,
cache_config=cache_config,
quant_config=quant_config,
norm_eps=config.rms_norm_eps,
max_position_embedding=config.max_position_embedding,
head_dim=config.head_dim,
share_q_dim=config.share_q_dim,
rope_theta=config.rope_theta,
rope_scaling=rope_scaling,
prefix=f"{prefix}.self_attn",
)
layer_idx = int(prefix.split("layers.")[1].split(".")[0])
moe_layers_enum = getattr(config, "moe_layers_enum", None)
if moe_layers_enum is not None:
moe_layers_idx = [int(i) for i in moe_layers_enum.strip().split(",")]
else:
# Default to 1dense.
moe_layers_idx = [i for i in range(1, config.num_hidden_layers)]
if layer_idx in moe_layers_idx:
self.moe = FusedMoEBlock(
config=config, quant_config=quant_config, prefix=f"{prefix}.moe"
)
self.share_expert = Step3TextMLP(
hidden_size=self.hidden_size,
intermediate_size=config.share_expert_dim,
hidden_act="silu",
quant_config=quant_config,
prefix=f"{prefix}.share_expert",
)
self.use_moe = True
else:
self.mlp = Step3TextMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act="silu",
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.use_moe = False
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]:
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
if self.use_moe:
share_output = self.share_expert(hidden_states)
moe_output = self.moe(hidden_states)
hidden_states = share_output + moe_output
else:
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class Step3TextModel(nn.Module):
def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.vocab_size = config.vocab_size
self.config = config
if get_pp_group().is_first_rank or (
config.tie_word_embeddings and get_pp_group().is_last_rank
):
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
)
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Step3TextDecoderLayer(
config=vllm_config.model_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
),
prefix=f"{prefix}.layers",
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states"], config.hidden_size
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{
"hidden_states": hidden_states,
"residual": residual,
}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class Step3TextForCausalLM(nn.Module, SupportsPP):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
):
super().__init__()
config = vllm_config.model_config.hf_config
lora_config = vllm_config.lora_config
self.config = config
self.vllm_config = vllm_config
self.model = Step3TextModel(vllm_config=vllm_config, prefix=prefix)
if get_pp_group().is_last_rank:
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
if not lora_config
else lora_config.lora_vocab_padding_size,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, config.vocab_size
)
else:
self.lm_head = PPMissingLayer()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
):
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
qkv_params_mapping = [
# (param_name, shard_name, relative_start_idx, relative_end_idx)
(
".qkv_proj",
".q_proj",
0,
self.config.share_q_dim
/ (self.config.share_q_dim + self.config.head_dim * 2),
),
(
".qkv_proj",
".k_proj",
self.config.share_q_dim
/ (self.config.share_q_dim + self.config.head_dim * 2),
(self.config.share_q_dim + self.config.head_dim)
/ (self.config.share_q_dim + self.config.head_dim * 2),
),
(
".qkv_proj",
".v_proj",
(self.config.share_q_dim + self.config.head_dim)
/ (self.config.share_q_dim + self.config.head_dim * 2),
(self.config.share_q_dim + self.config.head_dim * 2)
/ (self.config.share_q_dim + self.config.head_dim * 2),
),
]
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = [
(".moe.experts.w13_weight", ".moe.gate_proj.weight", "w1"),
(".moe.experts.w13_weight", ".moe.up_proj.weight", "w3"),
(".moe.experts.w2_weight", ".moe.down_proj.weight", "w2"),
]
disable_moe_stacked_params = [data[1] for data in expert_params_mapping]
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if any(
disable_moe_stacked_param in name
for disable_moe_stacked_param in disable_moe_stacked_params
):
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
loaded_params.add(name)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
for expert_id in range(loaded_weight.shape[0]):
loaded_weight_expert = loaded_weight[expert_id]
weight_loader(
param,
loaded_weight_expert,
name,
shard_id=shard_id,
expert_id=expert_id,
)
loaded_params.add(name)
break
else:
for (
param_name,
weight_name,
start_idx,
end_idx,
) in qkv_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
dim = param.shape[param.output_dim]
begin_idx = int(start_idx * dim)
end_idx = int(end_idx * dim)
param_slice = param.narrow(
param.output_dim, begin_idx, end_idx - begin_idx
)
param_slice.copy_(loaded_weight)
loaded_params.add(name)
break
else:
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params