mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:26:12 +08:00
570 lines
20 KiB
Python
570 lines
20 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Inference-only Jurassic model."""
|
|
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
from typing import Any
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
|
from vllm.distributed import (
|
|
get_pp_group,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce,
|
|
)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
DEFAULT_VOCAB_PADDING_SIZE,
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsPP
|
|
from .utils import (
|
|
PPMissingLayer,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class FusedMoEBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: ModelConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
if self.tp_size > config.moe_num_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {config.moe_num_experts}."
|
|
)
|
|
|
|
self.experts = FusedMoE(
|
|
num_experts=config.moe_num_experts,
|
|
top_k=config.moe_top_k,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=config.norm_expert_weight,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.experts",
|
|
)
|
|
self.gate = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.moe_num_experts,
|
|
bias=False,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
orig_shape = hidden_states.shape
|
|
hidden_dim = hidden_states.shape[-1]
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
router_logits, _ = self.gate(hidden_states)
|
|
|
|
final_hidden_states = self.experts(
|
|
hidden_states=hidden_states, router_logits=router_logits
|
|
)
|
|
if self.tp_size > 1:
|
|
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
|
|
|
|
return final_hidden_states.view(orig_shape)
|
|
|
|
|
|
class Step3TextMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size,
|
|
[intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
if hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
self.hidden_size = hidden_size
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
gate_up, _ = self.gate_up_proj(hidden_states)
|
|
intermediate_act = self.act_fn(gate_up)
|
|
output, _ = self.down_proj(intermediate_act)
|
|
return output
|
|
|
|
|
|
class Step3TextAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
norm_eps: float,
|
|
rope_theta: int,
|
|
share_q_dim: int | None = None,
|
|
rope_scaling: dict[str, Any] | None = None,
|
|
max_position_embedding: int = 8192,
|
|
head_dim: int = 256,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
|
|
if num_kv_heads != 1:
|
|
raise ValueError(
|
|
f"Step3TextAttention num_kv_heads must be 1, but got {num_kv_heads}."
|
|
)
|
|
self.num_kv_heads = num_kv_heads
|
|
|
|
self.head_dim = head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.q_size = share_q_dim if share_q_dim else self.head_dim
|
|
|
|
self.qkv_proj = ReplicatedLinear(
|
|
hidden_size,
|
|
self.q_size + self.kv_size * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
self.inter_norm = RMSNorm(self.q_size, eps=norm_eps)
|
|
self.wq = ColumnParallelLinear(
|
|
self.q_size,
|
|
self.head_dim * self.total_num_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.wq",
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embedding,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
scaling = self.head_dim**-0.5
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
scaling,
|
|
self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
def forward(
|
|
self, positions: torch.Tensor, hidden_states: torch.Tensor
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q = self.inter_norm(q)
|
|
q = self.wq(q)[0]
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
residual, _ = self.o_proj(attn_output)
|
|
return residual
|
|
|
|
|
|
class Step3TextDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: ModelConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
config = config.hf_config
|
|
self.hidden_size = config.hidden_size
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
|
|
self.self_attn = Step3TextAttention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=1,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
norm_eps=config.rms_norm_eps,
|
|
max_position_embedding=config.max_position_embedding,
|
|
head_dim=config.head_dim,
|
|
share_q_dim=config.share_q_dim,
|
|
rope_theta=config.rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
layer_idx = int(prefix.split("layers.")[1].split(".")[0])
|
|
moe_layers_enum = getattr(config, "moe_layers_enum", None)
|
|
if moe_layers_enum is not None:
|
|
moe_layers_idx = [int(i) for i in moe_layers_enum.strip().split(",")]
|
|
else:
|
|
# Default to 1dense.
|
|
moe_layers_idx = [i for i in range(1, config.num_hidden_layers)]
|
|
|
|
if layer_idx in moe_layers_idx:
|
|
self.moe = FusedMoEBlock(
|
|
config=config, quant_config=quant_config, prefix=f"{prefix}.moe"
|
|
)
|
|
self.share_expert = Step3TextMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.share_expert_dim,
|
|
hidden_act="silu",
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.share_expert",
|
|
)
|
|
self.use_moe = True
|
|
else:
|
|
self.mlp = Step3TextMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act="silu",
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.use_moe = False
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
|
|
if self.use_moe:
|
|
share_output = self.share_expert(hidden_states)
|
|
moe_output = self.moe(hidden_states)
|
|
hidden_states = share_output + moe_output
|
|
else:
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class Step3TextModel(nn.Module):
|
|
def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
self.vocab_size = config.vocab_size
|
|
self.config = config
|
|
|
|
if get_pp_group().is_first_rank or (
|
|
config.tie_word_embeddings and get_pp_group().is_last_rank
|
|
):
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: Step3TextDecoderLayer(
|
|
config=vllm_config.model_config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states"], config.hidden_size
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{
|
|
"hidden_states": hidden_states,
|
|
"residual": residual,
|
|
}
|
|
)
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class Step3TextForCausalLM(nn.Module, SupportsPP):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
lora_config = vllm_config.lora_config
|
|
self.config = config
|
|
self.vllm_config = vllm_config
|
|
|
|
self.model = Step3TextModel(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
if lora_config:
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
self.lm_head = ParallelLMHead(
|
|
self.unpadded_vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
|
if not lora_config
|
|
else lora_config.lora_vocab_padding_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.logits_processor = LogitsProcessor(
|
|
self.unpadded_vocab_size, config.vocab_size
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
):
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
qkv_params_mapping = [
|
|
# (param_name, shard_name, relative_start_idx, relative_end_idx)
|
|
(
|
|
".qkv_proj",
|
|
".q_proj",
|
|
0,
|
|
self.config.share_q_dim
|
|
/ (self.config.share_q_dim + self.config.head_dim * 2),
|
|
),
|
|
(
|
|
".qkv_proj",
|
|
".k_proj",
|
|
self.config.share_q_dim
|
|
/ (self.config.share_q_dim + self.config.head_dim * 2),
|
|
(self.config.share_q_dim + self.config.head_dim)
|
|
/ (self.config.share_q_dim + self.config.head_dim * 2),
|
|
),
|
|
(
|
|
".qkv_proj",
|
|
".v_proj",
|
|
(self.config.share_q_dim + self.config.head_dim)
|
|
/ (self.config.share_q_dim + self.config.head_dim * 2),
|
|
(self.config.share_q_dim + self.config.head_dim * 2)
|
|
/ (self.config.share_q_dim + self.config.head_dim * 2),
|
|
),
|
|
]
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
|
|
expert_params_mapping = [
|
|
(".moe.experts.w13_weight", ".moe.gate_proj.weight", "w1"),
|
|
(".moe.experts.w13_weight", ".moe.up_proj.weight", "w3"),
|
|
(".moe.experts.w2_weight", ".moe.down_proj.weight", "w2"),
|
|
]
|
|
|
|
disable_moe_stacked_params = [data[1] for data in expert_params_mapping]
|
|
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
if any(
|
|
disable_moe_stacked_param in name
|
|
for disable_moe_stacked_param in disable_moe_stacked_params
|
|
):
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
loaded_params.add(name)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
# Skip loading extra bias for GPTQ models.
|
|
if (
|
|
name.endswith(".bias") or name.endswith("_bias")
|
|
) and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
for expert_id in range(loaded_weight.shape[0]):
|
|
loaded_weight_expert = loaded_weight[expert_id]
|
|
weight_loader(
|
|
param,
|
|
loaded_weight_expert,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
loaded_params.add(name)
|
|
break
|
|
else:
|
|
for (
|
|
param_name,
|
|
weight_name,
|
|
start_idx,
|
|
end_idx,
|
|
) in qkv_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
dim = param.shape[param.output_dim]
|
|
begin_idx = int(start_idx * dim)
|
|
end_idx = int(end_idx * dim)
|
|
param_slice = param.narrow(
|
|
param.output_dim, begin_idx, end_idx - begin_idx
|
|
)
|
|
param_slice.copy_(loaded_weight)
|
|
loaded_params.add(name)
|
|
break
|
|
else:
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|