vllm/tests/tool_use/test_minimax_tool_parser.py
qscqesze 5e9455ae8f
[Bugfix]: Fix the streaming output for function calls in the minimax (#22015)
Signed-off-by: QscQ <qscqesze@gmail.com>
Signed-off-by: qingjun <qingjun@minimaxi.com>
2025-08-06 20:30:27 -07:00

1217 lines
53 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# ruff: noqa: E501
import json
from typing import Any
import pytest
from vllm.entrypoints.openai.protocol import (ChatCompletionToolsParam,
FunctionCall, ToolCall)
from vllm.entrypoints.openai.tool_parsers import MinimaxToolParser
from vllm.transformers_utils.tokenizer import get_tokenizer
# Use a common model that is likely to be available
MODEL = "MiniMaxAi/MiniMax-M1-40k"
@pytest.fixture(scope="module")
def minimax_tokenizer():
return get_tokenizer(tokenizer_name=MODEL)
@pytest.fixture
def minimax_tool_parser(minimax_tokenizer):
return MinimaxToolParser(minimax_tokenizer)
@pytest.fixture
def sample_tools():
return [
ChatCompletionToolsParam(type="function",
function={
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city name"
},
"state": {
"type": "string",
"description":
"The state code"
},
"unit": {
"type": "string",
"enum":
["fahrenheit", "celsius"]
}
},
"required": ["city", "state"]
}
}),
ChatCompletionToolsParam(type="function",
function={
"name": "calculate_area",
"description":
"Calculate area of a shape",
"parameters": {
"type": "object",
"properties": {
"shape": {
"type": "string"
},
"dimensions": {
"type": "object"
},
"precision": {
"type": "integer"
}
}
}
})
]
def assert_tool_calls(actual_tool_calls: list[ToolCall],
expected_tool_calls: list[ToolCall]):
assert len(actual_tool_calls) == len(expected_tool_calls)
for actual_tool_call, expected_tool_call in zip(actual_tool_calls,
expected_tool_calls):
assert isinstance(actual_tool_call.id, str)
assert len(actual_tool_call.id) > 16
assert actual_tool_call.type == "function"
assert actual_tool_call.function == expected_tool_call.function
def test_extract_tool_calls_no_tools(minimax_tool_parser):
model_output = "This is a test"
extracted_tool_calls = minimax_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert not extracted_tool_calls.tools_called
assert extracted_tool_calls.tool_calls == []
assert extracted_tool_calls.content == model_output
@pytest.mark.parametrize(
ids=[
"single_tool_call",
"multiple_tool_calls",
"tool_call_with_content_before",
"tool_call_with_single_line_json",
"tool_call_incomplete_tag",
],
argnames=["model_output", "expected_tool_calls", "expected_content"],
argvalues=[
(
"""<tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}
</tool_calls>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit",
}),
))
],
None,
),
(
"""<tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}
{"name": "get_current_weather", "arguments": {"city": "Orlando", "state": "FL", "unit": "fahrenheit"}}
</tool_calls>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Dallas",
"state": "TX",
"unit": "fahrenheit",
}),
)),
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Orlando",
"state": "FL",
"unit": "fahrenheit",
}),
)),
],
None,
),
(
"""I'll help you check the weather. <tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}
</tool_calls>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Seattle",
"state": "WA",
"unit": "celsius",
}),
))
],
"I'll help you check the weather.",
),
(
"""<tool_calls>
{"name": "get_current_weather", "arguments": {"city": "New York", "state": "NY", "unit": "celsius"}}
</tool_calls>""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "New York",
"state": "NY",
"unit": "celsius",
}),
))
],
None,
),
(
"""<tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Boston", "state": "MA"}}""",
[
ToolCall(function=FunctionCall(
name="get_current_weather",
arguments=json.dumps({
"city": "Boston",
"state": "MA",
}),
))
],
None,
),
],
)
def test_extract_tool_calls(minimax_tool_parser, model_output,
expected_tool_calls, expected_content):
extracted_tool_calls = minimax_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert_tool_calls(extracted_tool_calls.tool_calls, expected_tool_calls)
assert extracted_tool_calls.content == expected_content
def test_preprocess_model_output_with_thinking_tags(minimax_tool_parser):
"""Test that tool calls within thinking tags are removed during preprocessing."""
model_output = """<think>Let me think about this. <tool_calls>
{"name": "fake_tool", "arguments": {"param": "value"}}
</tool_calls> This should be removed.</think>
I'll help you with that. <tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA"}}
</tool_calls>"""
processed_output = minimax_tool_parser.preprocess_model_output(
model_output)
# The tool call within thinking tags should be removed
assert "fake_tool" not in processed_output
# But the thinking tag itself should remain
assert "<think>" in processed_output
assert "</think>" in processed_output
# The actual tool call outside thinking tags should remain
assert "get_current_weather" in processed_output
def test_extract_tool_calls_with_thinking_tags(minimax_tool_parser):
"""Test tool extraction when thinking tags contain tool calls that should be ignored."""
model_output = """<think>I should use a tool. <tool_calls>
{"name": "ignored_tool", "arguments": {"should": "ignore"}}
</tool_calls></think>
Let me help you with the weather. <tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Miami", "state": "FL", "unit": "fahrenheit"}}
</tool_calls>"""
extracted_tool_calls = minimax_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
assert len(extracted_tool_calls.tool_calls) == 1
assert extracted_tool_calls.tool_calls[
0].function.name == "get_current_weather"
# Content extraction is based on the position of the first <tool_calls> in the original model_output
# Since preprocessing removes tool calls within thinking tags, the actual first <tool_calls> is the external one
expected_content = """<think>I should use a tool. <tool_calls>
{"name": "ignored_tool", "arguments": {"should": "ignore"}}
</tool_calls></think>
Let me help you with the weather."""
assert extracted_tool_calls.content == expected_content
def test_extract_tool_calls_invalid_json(minimax_tool_parser):
"""Test that invalid JSON in tool calls is handled gracefully."""
model_output = """<tool_calls>
{"name": "valid_tool", "arguments": {"city": "Seattle"}}
{invalid json here}
{"name": "another_valid_tool", "arguments": {"param": "value"}}
</tool_calls>"""
extracted_tool_calls = minimax_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
# Should extract only the valid JSON tool calls
assert len(extracted_tool_calls.tool_calls) == 2
assert extracted_tool_calls.tool_calls[0].function.name == "valid_tool"
assert extracted_tool_calls.tool_calls[
1].function.name == "another_valid_tool"
def test_extract_tool_calls_missing_name_or_arguments(minimax_tool_parser):
"""Test that tool calls missing name or arguments are filtered out."""
model_output = """<tool_calls>
{"name": "valid_tool", "arguments": {"city": "Seattle"}}
{"name": "missing_args"}
{"arguments": {"city": "Portland"}}
{"name": "another_valid_tool", "arguments": {"param": "value"}}
</tool_calls>"""
extracted_tool_calls = minimax_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
assert extracted_tool_calls.tools_called
# Should extract only the valid tool calls with both name and arguments
assert len(extracted_tool_calls.tool_calls) == 2
assert extracted_tool_calls.tool_calls[0].function.name == "valid_tool"
assert extracted_tool_calls.tool_calls[
1].function.name == "another_valid_tool"
def test_streaming_basic_functionality(minimax_tool_parser):
"""Test basic streaming functionality."""
# Reset streaming state
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.streamed_args_for_tool = []
# Test with a simple tool call
current_text = """<tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Seattle"}}
</tool_calls>"""
# First call should handle the initial setup
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text="",
current_text=current_text,
delta_text="</tool_calls>",
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
# The result might be None or contain tool call information
# This depends on the internal state management
if result is not None and hasattr(result,
'tool_calls') and result.tool_calls:
assert len(result.tool_calls) >= 0
def test_streaming_with_content_before_tool_calls(minimax_tool_parser):
"""Test streaming when there's content before tool calls."""
# Reset streaming state
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.streamed_args_for_tool = []
current_text = "I'll help you with that. <tool_calls>"
# When there's content before tool calls, it should be returned as content
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text="I'll help you",
current_text=current_text,
delta_text=" with that. <tool_calls>",
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
if result is not None and hasattr(result, 'content'):
# Should contain some content
assert result.content is not None
def test_streaming_no_tool_calls(minimax_tool_parser):
"""Test streaming when there are no tool calls."""
current_text = "This is just regular text without any tool calls."
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text="This is just regular text",
current_text=current_text,
delta_text=" without any tool calls.",
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
# Should return the delta text as content
assert result is not None
assert hasattr(result, 'content')
assert result.content == " without any tool calls."
def test_streaming_with_thinking_tags(minimax_tool_parser):
"""Test streaming with thinking tags that contain tool calls."""
# Reset streaming state
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.streamed_args_for_tool = []
current_text = """<think><tool_calls>{"name": "ignored", "arguments": {}}</tool_calls></think><tool_calls>{"name": "real_tool", "arguments": {"param": "value"}}</tool_calls>"""
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text="",
current_text=current_text,
delta_text=current_text,
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
# The preprocessing should remove tool calls from thinking tags
# and only process the real tool call
if result is not None and hasattr(result,
'tool_calls') and result.tool_calls:
for tool_call in result.tool_calls:
assert tool_call.function.name != "ignored"
def test_extract_tool_calls_multiline_json_not_supported(minimax_tool_parser):
"""Test that multiline JSON in tool calls is not currently supported."""
model_output = """<tool_calls>
{
"name": "get_current_weather",
"arguments": {
"city": "New York",
"state": "NY",
"unit": "celsius"
}
}
</tool_calls>"""
extracted_tool_calls = minimax_tool_parser.extract_tool_calls(
model_output, request=None) # type: ignore[arg-type]
# Multiline JSON is currently not supported, should return no tools called
assert not extracted_tool_calls.tools_called
assert extracted_tool_calls.tool_calls == []
assert extracted_tool_calls.content is None
def test_streaming_arguments_incremental_output(minimax_tool_parser):
"""Test that streaming arguments are returned incrementally, not cumulatively."""
# Reset streaming state
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.streamed_args_for_tool = []
# Simulate progressive tool call building
stages = [
# Stage 1: Function name complete
'<tool_calls>\n{"name": "get_current_weather", "arguments": ',
# Stage 2: Arguments object starts with first key
'<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": ',
# Stage 3: First parameter value added
'<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle"',
# Stage 4: Second parameter added
'<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA"',
# Stage 5: Third parameter added, arguments complete
'<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}',
# Stage 6: Tool calls closed
'<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}\n</tool',
'<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}\n</tool_calls>'
]
function_name_sent = False
previous_args_content = ""
for i, current_text in enumerate(stages):
previous_text = stages[i - 1] if i > 0 else ""
delta_text = current_text[len(previous_text
):] if i > 0 else current_text
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
print(f"Stage {i}: Current text: {repr(current_text)}")
print(f"Stage {i}: Delta text: {repr(delta_text)}")
if result is not None and hasattr(result,
'tool_calls') and result.tool_calls:
tool_call = result.tool_calls[0]
# Check if function name is sent (should happen only once)
if tool_call.function and tool_call.function.name:
assert tool_call.function.name == "get_current_weather"
function_name_sent = True
print(
f"Stage {i}: Function name sent: {tool_call.function.name}"
)
# Check if arguments are sent incrementally
if tool_call.function and tool_call.function.arguments:
args_fragment = tool_call.function.arguments
print(
f"Stage {i}: Got arguments fragment: {repr(args_fragment)}"
)
# For incremental output, each fragment should be new content only
# The fragment should not contain all previous content
if i >= 2 and previous_args_content: # After we start getting arguments
# The new fragment should not be identical to or contain all previous content
assert args_fragment != previous_args_content, f"Fragment should be incremental, not cumulative: {args_fragment}"
# If this is truly incremental, the fragment should be relatively small
# compared to the complete arguments so far
if len(args_fragment) > len(previous_args_content):
print(
"Warning: Fragment seems cumulative rather than incremental"
)
previous_args_content = args_fragment
# Verify function name was sent at least once
assert function_name_sent, "Function name should have been sent"
def test_streaming_arguments_delta_only(minimax_tool_parser):
"""Test that each streaming call returns only the delta (new part) of arguments."""
# Reset streaming state
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.streamed_args_for_tool = []
# Simulate two consecutive calls with growing arguments
call1_text = '<tool_calls>\n{"name": "test_tool", "arguments": {"param1": "value1"}}'
call2_text = '<tool_calls>\n{"name": "test_tool", "arguments": {"param1": "value1", "param2": "value2"}}'
print(f"Call 1 text: {repr(call1_text)}")
print(f"Call 2 text: {repr(call2_text)}")
# First call - should get the function name and initial arguments
result1 = minimax_tool_parser.extract_tool_calls_streaming(
previous_text="",
current_text=call1_text,
delta_text=call1_text,
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
print(f"Result 1: {result1}")
if result1 and hasattr(result1, 'tool_calls') and result1.tool_calls:
for i, tc in enumerate(result1.tool_calls):
print(f" Tool call {i}: {tc}")
# Second call - should only get the delta (new part) of arguments
result2 = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=call1_text,
current_text=call2_text,
delta_text=', "param2": "value2"}',
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
print(f"Result 2: {result2}")
if result2 and hasattr(result2, 'tool_calls') and result2.tool_calls:
for i, tc in enumerate(result2.tool_calls):
print(f" Tool call {i}: {tc}")
# Verify the second call only returns the delta
if result2 is not None and hasattr(result2,
'tool_calls') and result2.tool_calls:
tool_call = result2.tool_calls[0]
if tool_call.function and tool_call.function.arguments:
args_delta = tool_call.function.arguments
print(f"Arguments delta from second call: {repr(args_delta)}")
# Should only contain the new part, not the full arguments
# The delta should be something like ', "param2": "value2"}' or just '"param2": "value2"'
assert ', "param2": "value2"}' in args_delta or '"param2": "value2"' in args_delta, f"Expected delta containing param2, got: {args_delta}"
# Should NOT contain the previous parameter data
assert '"param1": "value1"' not in args_delta, f"Arguments delta should not contain previous data: {args_delta}"
# The delta should be relatively short (incremental, not cumulative)
expected_max_length = len(
', "param2": "value2"}') + 10 # Some tolerance
assert len(
args_delta
) <= expected_max_length, f"Delta seems too long (possibly cumulative): {args_delta}"
print("✓ Delta validation passed")
else:
print("No arguments in result2 tool call")
else:
print("No tool calls in result2 or result2 is None")
# This might be acceptable if no incremental update is needed
# But let's at least verify that result1 had some content
assert result1 is not None, "At least the first call should return something"
def test_streaming_openai_compatibility(minimax_tool_parser):
"""Test that streaming behavior with buffering works correctly."""
# Reset streaming state
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.streamed_args_for_tool = []
# Reset buffering state
minimax_tool_parser.pending_buffer = ""
minimax_tool_parser.in_thinking_tag = False
minimax_tool_parser.thinking_depth = 0
# Test scenario: simple buffering without complex tool call context
test_cases: list[dict[str, Any]] = [
{
'stage': 'Token: <',
'previous': '',
'current': '<',
'delta': '<',
'expected_content': None, # Should be buffered
},
{
'stage': 'Token: tool_calls>',
'previous': '<',
'current': '<tool_calls>',
'delta': 'tool_calls>',
'expected_content': None, # Complete tag, should not output
},
{
'stage': 'Regular content',
'previous': 'Hello',
'current': 'Hello world',
'delta': ' world',
'expected_content': ' world', # Normal content should pass through
},
{
'stage': 'Content with end tag start',
'previous': 'Text',
'current': 'Text content</tool_',
'delta': ' content</tool_',
'expected_content':
' content', # Content part output, </tool_ buffered
},
{
'stage': 'Complete end tag',
'previous': 'Text content</tool_',
'current': 'Text content</tool_calls>',
'delta': 'calls>',
'expected_content': None, # Complete close tag, should not output
},
]
for i, test_case in enumerate(test_cases):
print(f"\n--- Stage {i}: {test_case['stage']} ---")
print(f"Previous: {repr(test_case['previous'])}")
print(f"Current: {repr(test_case['current'])}")
print(f"Delta: {repr(test_case['delta'])}")
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=test_case['previous'],
current_text=test_case['current'],
delta_text=test_case['delta'],
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
print(f"Result: {result}")
# Check expected content
if test_case['expected_content'] is None:
assert result is None or not getattr(result, 'content', None), \
f"Stage {i}: Expected no content, got {result}"
print("✓ No content output as expected")
else:
assert result is not None and hasattr(result, 'content'), \
f"Stage {i}: Expected content, got {result}"
assert result.content == test_case['expected_content'], \
f"Stage {i}: Expected content {test_case['expected_content']}, got {result.content}"
print(f"✓ Content matches: {repr(result.content)}")
print("✓ Streaming test with buffering completed successfully")
def test_streaming_thinking_tag_buffering(minimax_tool_parser):
"""Test that tool calls within thinking tags are properly handled during streaming."""
# Reset streaming state
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.streamed_args_for_tool = []
# Reset buffering state
minimax_tool_parser.pending_buffer = ""
minimax_tool_parser.in_thinking_tag = False
minimax_tool_parser.thinking_depth = 0
# Test scenario: tool calls within thinking tags should be ignored
test_cases: list[dict[str, Any]] = [
{
'stage': 'Start thinking',
'previous': '',
'current': '<think>I need to use a tool. <tool_calls>',
'delta': '<think>I need to use a tool. <tool_calls>',
'expected_content':
'<think>I need to use a tool. <tool_calls>', # Should pass through as content
},
{
'stage':
'Tool call in thinking',
'previous':
'<think>I need to use a tool. <tool_calls>',
'current':
'<think>I need to use a tool. <tool_calls>\n{"name": "ignored_tool", "arguments": {"param": "value"}}\n</tool_calls>',
'delta':
'\n{"name": "ignored_tool", "arguments": {"param": "value"}}\n</tool_calls>',
'expected_content':
'\n{"name": "ignored_tool", "arguments": {"param": "value"}}\n</tool_calls>', # </tool_calls> should be preserved in thinking tags
},
{
'stage': 'Real tool call after thinking',
'previous':
'<think>I need to use a tool. <tool_calls>\n{"name": "ignored_tool", "arguments": {"param": "value"}}\n</tool_calls></think>',
'current':
'<think>I need to use a tool. <tool_calls>\n{"name": "ignored_tool", "arguments": {"param": "value"}}\n</tool_calls></think>\n<tool_calls>',
'delta': '\n<tool_calls>',
'expected_content':
'\n', # Should output '\n' and suppress <tool_calls>
}
]
for i, test_case in enumerate(test_cases):
print(f"\n--- Stage {i}: {test_case['stage']} ---")
print(f"Previous: {repr(test_case['previous'])}")
print(f"Current: {repr(test_case['current'])}")
print(f"Delta: {repr(test_case['delta'])}")
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=test_case['previous'],
current_text=test_case['current'],
delta_text=test_case['delta'],
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
print(f"Result: {result}")
# Check expected content
if 'expected_content' in test_case:
if test_case['expected_content'] is None:
assert result is None or not getattr(result, 'content', None), \
f"Stage {i}: Expected no content, got {result}"
else:
assert result is not None and hasattr(result, 'content'), \
f"Stage {i}: Expected content, got {result}"
assert result.content == test_case['expected_content'], \
f"Stage {i}: Expected content {test_case['expected_content']}, got {result.content}"
print(f"✓ Content matches: {repr(result.content)}")
# Check tool calls
if test_case.get('expected_tool_call'):
assert result is not None and hasattr(result, 'tool_calls') and result.tool_calls, \
f"Stage {i}: Expected tool call, got {result}"
tool_call = result.tool_calls[0]
assert tool_call.function.name == "real_tool", \
f"Expected real_tool, got {tool_call.function.name}"
print(f"✓ Real tool call detected: {tool_call.function.name}")
print("✓ Thinking tag buffering test completed successfully")
def reset_streaming_state(minimax_tool_parser):
"""Helper function to properly reset the streaming state for MinimaxToolParser."""
# Reset minimax-specific state
minimax_tool_parser._reset_streaming_state()
# Reset base class state (these should still be reset for compatibility)
minimax_tool_parser.prev_tool_call_arr = []
minimax_tool_parser.current_tool_id = -1
minimax_tool_parser.current_tool_name_sent = False
minimax_tool_parser.streamed_args_for_tool = []
def test_streaming_complex_scenario_with_multiple_tools(minimax_tool_parser):
"""Test complex streaming scenario: tools inside <think> tags and multiple tool calls in one group."""
# Reset streaming state
reset_streaming_state(minimax_tool_parser)
# Complex scenario: tools inside thinking tags and multiple tools in one group
test_stages: list[dict[str, Any]] = [
{
'stage': 'Initial content',
'previous': '',
'current': 'Let me help you with this task.',
'delta': 'Let me help you with this task.',
'expected_content': 'Let me help you with this task.',
'expected_tool_calls': 0,
},
{
'stage': 'Start thinking tag',
'previous': 'Let me help you with this task.',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.',
'delta': '<think>I need to analyze this situation first.',
'expected_content':
'<think>I need to analyze this situation first.',
'expected_tool_calls': 0,
},
{
'stage': 'Tool call inside thinking tag starts',
'previous':
'Let me help you with this task.<think>I need to analyze this situation first.',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>',
'delta': '<tool_calls>',
'expected_content':
'<tool_calls>', # Inside thinking tags, tool tags should be preserved as content
'expected_tool_calls': 0,
},
{
'stage': 'Complete tool call inside thinking tag',
'previous':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls>',
'delta':
'\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls>',
'expected_content':
'\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls>',
'expected_tool_calls':
0, # Tools inside thinking tags should be ignored
},
{
'stage': 'End thinking tag',
'previous':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls>',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>',
'delta': '</think>',
'expected_content': '</think>',
'expected_tool_calls': 0,
},
{
'stage': 'Multiple tools group starts',
'previous':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>\nNow I need to get weather information and calculate area.<tool_calls>',
'delta':
'\nNow I need to get weather information and calculate area.<tool_calls>',
'expected_content':
'\nNow I need to get weather information and calculate area.', # <tool_calls> should be filtered
'expected_tool_calls': 0,
},
{
'stage': 'First tool in group',
'previous':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>\nNow I need to get weather information and calculate area.<tool_calls>',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>\nNow I need to get weather information and calculate area.<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}',
'delta':
'\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}',
'expected_content':
None, # No content should be output when tool call is in progress
'expected_tool_calls': 1,
'expected_tool_name': 'get_current_weather',
},
{
'stage': 'Second tool in group',
'previous':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>\nNow I need to get weather information and calculate area.<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>\nNow I need to get weather information and calculate area.<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}\n{"name": "calculate_area", "arguments": {"shape": "rectangle", "dimensions": {"width": 10, "height": 5}}}',
'delta':
'\n{"name": "calculate_area", "arguments": {"shape": "rectangle", "dimensions": {"width": 10, "height": 5}}}',
'expected_content': None,
'expected_tool_calls': 1,
'expected_tool_name': 'calculate_area',
},
{
'stage': 'Complete tool calls group',
'previous':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>\nNow I need to get weather information and calculate area.<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}\n{"name": "calculate_area", "arguments": {"shape": "rectangle", "dimensions": {"width": 10, "height": 5}}}',
'current':
'Let me help you with this task.<think>I need to analyze this situation first.<tool_calls>\n{"name": "internal_analysis", "arguments": {"query": "analyze situation"}}\n</tool_calls></think>\nNow I need to get weather information and calculate area.<tool_calls>\n{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}\n{"name": "calculate_area", "arguments": {"shape": "rectangle", "dimensions": {"width": 10, "height": 5}}}</tool_calls>',
'delta': '</tool_calls>',
'expected_content': None,
'expected_tool_calls': 0,
}
]
tool_calls_count = 0
for i, test_case in enumerate(test_stages):
print(f"\n--- Stage {i}: {test_case['stage']} ---")
print(
f"Previous: {repr(test_case['previous'][:100])}{'...' if len(test_case['previous']) > 100 else ''}"
)
print(f"Current: {repr(test_case['current'][-100:])}")
print(f"Delta: {repr(test_case['delta'])}")
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=test_case['previous'],
current_text=test_case['current'],
delta_text=test_case['delta'],
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
print(f"Result: {result}")
# Check expected content
if test_case['expected_content'] is None:
assert result is None or not getattr(result, 'content', None), \
f"Stage {i}: Expected no content output, got {result}"
print("✓ No content output as expected")
else:
assert result is not None and hasattr(result, 'content'), \
f"Stage {i}: Expected content output, got {result}"
assert result.content == test_case['expected_content'], \
f"Stage {i}: Expected content {repr(test_case['expected_content'])}, got {repr(result.content)}"
print(f"✓ Content matches: {repr(result.content)}")
# Check tool calls
expected_tool_calls = test_case['expected_tool_calls']
actual_tool_calls = len(result.tool_calls) if result and hasattr(
result, 'tool_calls') and result.tool_calls else 0
if expected_tool_calls > 0:
assert actual_tool_calls >= expected_tool_calls, \
f"Stage {i}: Expected at least {expected_tool_calls} tool calls, got {actual_tool_calls}"
if 'expected_tool_name' in test_case:
# Find the tool call with the expected name
found_tool_call = None
for tool_call in result.tool_calls:
if tool_call.function.name == test_case[
'expected_tool_name']:
found_tool_call = tool_call
break
assert found_tool_call is not None, \
f"Stage {i}: Expected tool name {test_case['expected_tool_name']} not found in tool calls: {[tc.function.name for tc in result.tool_calls]}"
print(f"✓ Tool call correct: {found_tool_call.function.name}")
# Ensure tools inside thinking tags are not called
assert found_tool_call.function.name != "internal_analysis", \
f"Stage {i}: Tool 'internal_analysis' inside thinking tags should not be called"
tool_calls_count += actual_tool_calls
print(f"✓ Detected {actual_tool_calls} tool calls")
else:
assert actual_tool_calls == 0, \
f"Stage {i}: Expected no tool calls, got {actual_tool_calls}"
# Verify overall results
print("\n=== Test Summary ===")
print(f"Total tool calls count: {tool_calls_count}")
assert tool_calls_count >= 2, f"Expected at least 2 valid tool calls (outside thinking tags), but got {tool_calls_count}"
print("✓ Complex streaming test completed:")
print(" - ✓ Tools inside thinking tags correctly ignored")
print(" - ✓ Two tool groups outside thinking tags correctly parsed")
print(" - ✓ Content and tool call streaming correctly handled")
print(" - ✓ Buffering mechanism works correctly")
def test_streaming_character_by_character_output(minimax_tool_parser):
"""Test character-by-character streaming output to simulate real streaming scenarios."""
# Reset streaming state
reset_streaming_state(minimax_tool_parser)
# Complete text that will be streamed character by character
complete_text = """I'll help you with the weather analysis. <think>Let me think about this. <tool_calls>
{"name": "internal_analysis", "arguments": {"type": "thinking"}}
</tool_calls>This tool should be ignored.</think>
Now I'll get the weather information for you. <tool_calls>
{"name": "get_current_weather", "arguments": {"city": "Seattle", "state": "WA", "unit": "celsius"}}
{"name": "calculate_area", "arguments": {"shape": "rectangle", "dimensions": {"width": 10, "height": 5}}}
</tool_calls>Here are the results."""
print("\n=== Starting character-by-character streaming test ===")
print(f"Complete text length: {len(complete_text)} characters")
# Track the streaming results
content_fragments = []
tool_calls_detected = []
# Stream character by character
for i in range(1, len(complete_text) + 1):
current_text = complete_text[:i]
previous_text = complete_text[:i - 1] if i > 1 else ""
delta_text = complete_text[i - 1:i]
# Show progress every 50 characters
if i % 50 == 0 or i == len(complete_text):
print(f"Progress: {i}/{len(complete_text)} characters")
# Call the streaming parser
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
# Collect results
if result is not None:
if hasattr(result, 'content') and result.content:
content_fragments.append(result.content)
# Log important content fragments
if any(
keyword in result.content for keyword in
['<think>', '</think>', '<tool_calls>', '</tool_calls>']):
print(
f" Char {i}: Content fragment: {repr(result.content)}"
)
if hasattr(result, 'tool_calls') and result.tool_calls:
for tool_call in result.tool_calls:
tool_info = {
'character_position':
i,
'function_name':
tool_call.function.name
if tool_call.function else None,
'arguments':
tool_call.function.arguments
if tool_call.function else None,
}
tool_calls_detected.append(tool_info)
print(
f" Char {i}: Tool call detected: {tool_call.function.name}"
)
if tool_call.function.arguments:
print(
f" Arguments: {repr(tool_call.function.arguments)}"
)
# Verify results
print("\n=== Streaming Test Results ===")
print(f"Total content fragments: {len(content_fragments)}")
print(f"Total tool calls detected: {len(tool_calls_detected)}")
# Reconstruct content from fragments
reconstructed_content = ''.join(content_fragments)
print(f"Reconstructed content length: {len(reconstructed_content)}")
# Verify thinking tags content is preserved
assert '<think>' in reconstructed_content, "Opening thinking tag should be preserved in content"
assert '</think>' in reconstructed_content, "Closing thinking tag should be preserved in content"
# Verify that tool calls inside thinking tags are NOT extracted as actual tool calls
thinking_tool_calls = [
tc for tc in tool_calls_detected
if tc['function_name'] == 'internal_analysis'
]
assert len(
thinking_tool_calls
) == 0, f"Tool calls inside thinking tags should be ignored, but found: {thinking_tool_calls}"
# Verify that real tool calls outside thinking tags ARE extracted
weather_tool_calls = [
tc for tc in tool_calls_detected
if tc['function_name'] == 'get_current_weather'
]
area_tool_calls = [
tc for tc in tool_calls_detected
if tc['function_name'] == 'calculate_area'
]
print(tool_calls_detected)
assert len(weather_tool_calls
) > 0, "get_current_weather tool call should be detected"
assert len(
area_tool_calls) > 0, "calculate_area tool call should be detected"
# Verify tool call arguments are properly streamed
weather_args_found = any(tc['arguments'] for tc in weather_tool_calls
if tc['arguments'])
area_args_found = any(tc['arguments'] for tc in area_tool_calls
if tc['arguments'])
print(f"Weather tool call with arguments: {weather_args_found}")
print(f"Area tool call with arguments: {area_args_found}")
# Verify content before and after tool calls
assert 'I\'ll help you with the weather analysis.' in reconstructed_content, "Initial content should be preserved"
assert 'Here are the results.' in reconstructed_content, "Final content should be preserved"
# Verify that <tool_calls> and </tool_calls> tags are not included in the final content
# (they should be filtered out when not inside thinking tags)
content_outside_thinking = reconstructed_content
# Remove thinking tag content to check content outside
if '<think>' in content_outside_thinking and '</think>' in content_outside_thinking:
start_think = content_outside_thinking.find('<think>')
end_think = content_outside_thinking.find('</think>') + len('</think>')
content_outside_thinking = content_outside_thinking[:
start_think] + content_outside_thinking[
end_think:]
# Outside thinking tags, tool_calls tags should be filtered
tool_calls_in_content = content_outside_thinking.count('<tool_calls>')
assert tool_calls_in_content == 0, f"<tool_calls> tags should be filtered from content outside thinking tags, but found {tool_calls_in_content}"
print(
"\n=== Character-by-character streaming test completed successfully ==="
)
print("✓ Tool calls inside thinking tags correctly ignored")
print("✓ Tool calls outside thinking tags correctly detected")
print("✓ Content properly streamed and reconstructed")
print("✓ Tool call tags properly filtered from content")
print("✓ Character-level streaming works correctly")
def test_streaming_character_by_character_simple_tool_call(
minimax_tool_parser):
"""Test character-by-character streaming for a simple tool call scenario."""
# Reset streaming state
reset_streaming_state(minimax_tool_parser)
# Simple tool call text
simple_text = 'Let me check the weather. <tool_calls>\n{"name": "get_weather", "arguments": {"city": "NYC"}}\n</tool_calls>'
print("\n=== Simple character-by-character test ===")
print(f"Text: {repr(simple_text)}")
content_parts = []
tool_name_sent = False
tool_args_sent = False
for i in range(1, len(simple_text) + 1):
current_text = simple_text[:i]
previous_text = simple_text[:i - 1] if i > 1 else ""
delta_text = simple_text[i - 1:i]
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
if result:
if hasattr(result, 'content') and result.content:
content_parts.append(result.content)
print(
f" Char {i} ({repr(delta_text)}): Content: {repr(result.content)}"
)
if hasattr(result, 'tool_calls') and result.tool_calls:
for tool_call in result.tool_calls:
if tool_call.function and tool_call.function.name:
tool_name_sent = True
print(
f" Char {i}: Tool name: {tool_call.function.name}"
)
if tool_call.function and tool_call.function.arguments:
tool_args_sent = True
print(
f" Char {i}: Tool args: {repr(tool_call.function.arguments)}"
)
# Verify basic expectations
reconstructed_content = ''.join(content_parts)
print(f"Final reconstructed content: {repr(reconstructed_content)}")
assert tool_name_sent, "Tool name should be sent during streaming"
assert tool_args_sent, "Tool arguments should be sent during streaming"
assert "Let me check the weather." in reconstructed_content, "Initial content should be preserved"
print("✓ Simple character-by-character test passed")
def test_streaming_character_by_character_with_buffering(minimax_tool_parser):
"""Test character-by-character streaming with edge cases that trigger buffering."""
# Reset streaming state
reset_streaming_state(minimax_tool_parser)
# Text that includes potential buffering scenarios
buffering_text = 'Hello world<tool_calls>\n{"name": "test"}\n</tool_calls>done'
print("\n=== Buffering character-by-character test ===")
print(f"Text: {repr(buffering_text)}")
all_content = []
for i in range(1, len(buffering_text) + 1):
current_text = buffering_text[:i]
previous_text = buffering_text[:i - 1] if i > 1 else ""
delta_text = buffering_text[i - 1:i]
result = minimax_tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
previous_token_ids=[],
current_token_ids=[],
delta_token_ids=[],
request=None,
)
if result and hasattr(result, 'content') and result.content:
all_content.append(result.content)
print(f" Char {i} ({repr(delta_text)}): {repr(result.content)}")
final_content = ''.join(all_content)
print(f"Final content: {repr(final_content)}")
# The parser should handle the edge case where </tool_calls> appears before <tool_calls>
assert "Hello" in final_content, "Initial 'Hello' should be preserved"
assert "world" in final_content, "Content after false closing tag should be preserved"
assert "done" in final_content, "Final content should be preserved"
print("✓ Buffering character-by-character test passed")