mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 01:45:52 +08:00
378 lines
13 KiB
Python
378 lines
13 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""High-Performance Triton-only Attention layer."""
|
|
|
|
from dataclasses import dataclass
|
|
from typing import ClassVar
|
|
|
|
import torch
|
|
|
|
from vllm.attention.backends.abstract import (
|
|
AttentionBackend,
|
|
AttentionImpl,
|
|
AttentionType,
|
|
MultipleOf,
|
|
)
|
|
from vllm.attention.ops.triton_reshape_and_cache_flash import (
|
|
triton_reshape_and_cache_flash,
|
|
)
|
|
from vllm.attention.ops.triton_unified_attention import unified_attention
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.cache import CacheDType
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
QuantKey,
|
|
kFp8StaticTensorSym,
|
|
)
|
|
from vllm.platforms import current_platform
|
|
from vllm.platforms.interface import DeviceCapability
|
|
from vllm.v1.attention.backends.utils import (
|
|
AttentionCGSupport,
|
|
AttentionMetadataBuilder,
|
|
CommonAttentionMetadata,
|
|
)
|
|
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class TritonAttentionMetadata:
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
num_actual_tokens: int # Number of tokens excluding padding.
|
|
max_query_len: int
|
|
query_start_loc: torch.Tensor
|
|
max_seq_len: int
|
|
seq_lens: torch.Tensor
|
|
block_table: torch.Tensor
|
|
slot_mapping: torch.Tensor
|
|
|
|
# For cascade attention.
|
|
use_cascade: bool
|
|
common_prefix_len: int
|
|
cu_prefix_query_lens: torch.Tensor | None
|
|
prefix_kv_lens: torch.Tensor | None
|
|
suffix_kv_lens: torch.Tensor | None
|
|
|
|
# Optional aot scheduling
|
|
scheduler_metadata: torch.Tensor | None = None
|
|
prefix_scheduler_metadata: torch.Tensor | None = None
|
|
|
|
|
|
class TritonAttentionMetadataBuilder(AttentionMetadataBuilder[TritonAttentionMetadata]):
|
|
_cudagraph_support: ClassVar[AttentionCGSupport] = AttentionCGSupport.ALWAYS
|
|
|
|
def __init__(
|
|
self,
|
|
kv_cache_spec: AttentionSpec,
|
|
layer_names: list[str],
|
|
vllm_config: VllmConfig,
|
|
device: torch.device,
|
|
):
|
|
super().__init__(kv_cache_spec, layer_names, vllm_config, device)
|
|
|
|
self.block_size = kv_cache_spec.block_size
|
|
|
|
model_config = vllm_config.model_config
|
|
self.num_heads_q = model_config.get_num_attention_heads(
|
|
vllm_config.parallel_config
|
|
)
|
|
self.num_heads_kv = model_config.get_num_kv_heads(vllm_config.parallel_config)
|
|
self.headdim = model_config.get_head_size()
|
|
|
|
def build_for_cudagraph_capture(
|
|
self, common_attn_metadata: CommonAttentionMetadata
|
|
) -> TritonAttentionMetadata:
|
|
attn_metadata = self.build(0, common_attn_metadata)
|
|
# When doing full graph capture, setting seq_lens to
|
|
# max_model_len will cause graph capture to be extremely
|
|
# slow, so here we set it to 1.
|
|
attn_metadata.seq_lens.fill_(1)
|
|
return attn_metadata
|
|
|
|
def build(
|
|
self,
|
|
common_prefix_len: int,
|
|
common_attn_metadata: CommonAttentionMetadata,
|
|
fast_build: bool = False,
|
|
) -> TritonAttentionMetadata:
|
|
num_actual_tokens = common_attn_metadata.num_actual_tokens
|
|
max_query_len = common_attn_metadata.max_query_len
|
|
|
|
max_seq_len = common_attn_metadata.max_seq_len
|
|
query_start_loc = common_attn_metadata.query_start_loc
|
|
seq_lens = common_attn_metadata.seq_lens
|
|
block_table_tensor = common_attn_metadata.block_table_tensor
|
|
slot_mapping = common_attn_metadata.slot_mapping
|
|
|
|
use_cascade = common_prefix_len > 0
|
|
|
|
if use_cascade:
|
|
cu_prefix_query_lens = torch.tensor(
|
|
[0, num_actual_tokens], dtype=torch.int32, device=self.device
|
|
)
|
|
prefix_kv_lens = torch.tensor(
|
|
[common_prefix_len], dtype=torch.int32, device=self.device
|
|
)
|
|
suffix_kv_lens = common_attn_metadata.seq_lens_cpu - common_prefix_len
|
|
suffix_kv_lens = suffix_kv_lens.to(self.device)
|
|
else:
|
|
cu_prefix_query_lens = None
|
|
prefix_kv_lens = None
|
|
suffix_kv_lens = None
|
|
prefix_scheduler_metadata = None
|
|
|
|
attn_metadata = TritonAttentionMetadata(
|
|
num_actual_tokens=num_actual_tokens,
|
|
max_query_len=max_query_len,
|
|
query_start_loc=query_start_loc,
|
|
max_seq_len=max_seq_len,
|
|
seq_lens=seq_lens,
|
|
block_table=block_table_tensor,
|
|
slot_mapping=slot_mapping,
|
|
use_cascade=use_cascade,
|
|
common_prefix_len=common_prefix_len,
|
|
cu_prefix_query_lens=cu_prefix_query_lens,
|
|
prefix_kv_lens=prefix_kv_lens,
|
|
suffix_kv_lens=suffix_kv_lens,
|
|
prefix_scheduler_metadata=prefix_scheduler_metadata,
|
|
)
|
|
return attn_metadata
|
|
|
|
|
|
class TritonAttentionBackend(AttentionBackend):
|
|
accept_output_buffer: bool = True
|
|
supported_dtypes: ClassVar[list[torch.dtype]] = [
|
|
torch.float16,
|
|
torch.bfloat16,
|
|
torch.float32,
|
|
]
|
|
supported_kv_cache_dtypes: ClassVar[list[CacheDType]] = [
|
|
"auto",
|
|
"fp8",
|
|
"fp8_e4m3",
|
|
"fp8_e5m2",
|
|
]
|
|
|
|
@staticmethod
|
|
def get_supported_kernel_block_sizes() -> list[int | MultipleOf]:
|
|
return [MultipleOf(16)]
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "TRITON_ATTN"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> type["TritonAttentionImpl"]:
|
|
return TritonAttentionImpl
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
cache_dtype_str: str = "auto",
|
|
) -> tuple[int, ...]:
|
|
if block_size % 16 != 0:
|
|
raise ValueError("Block size must be a multiple of 16.")
|
|
return (num_blocks, 2, block_size, num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def use_cascade_attention(*args, **kwargs) -> bool:
|
|
return False
|
|
|
|
@staticmethod
|
|
def get_builder_cls() -> type["TritonAttentionMetadataBuilder"]:
|
|
return TritonAttentionMetadataBuilder
|
|
|
|
@classmethod
|
|
def supports_head_size(cls, head_size: int) -> bool:
|
|
return head_size >= 32
|
|
|
|
@classmethod
|
|
def supports_sink(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def supports_compute_capability(cls, capability: DeviceCapability) -> bool:
|
|
return True
|
|
|
|
|
|
class TritonAttentionImpl(AttentionImpl):
|
|
def fused_output_quant_supported(self, quant_key: QuantKey):
|
|
return quant_key == kFp8StaticTensorSym
|
|
|
|
def supports_quant_query_input(self) -> bool:
|
|
return current_platform.is_cuda()
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: list[float] | None,
|
|
sliding_window: int | None,
|
|
kv_cache_dtype: str,
|
|
logits_soft_cap: float | None = None,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
kv_sharing_target_layer_name: int | None = None,
|
|
sinks: torch.Tensor | None = None,
|
|
) -> None:
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
if sliding_window is None:
|
|
self.sliding_window = (-1, -1)
|
|
else:
|
|
self.sliding_window = (sliding_window - 1, 0)
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
if logits_soft_cap is None:
|
|
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
|
|
logits_soft_cap = 0
|
|
self.logits_soft_cap = logits_soft_cap
|
|
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
|
|
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
|
|
if attn_type not in [AttentionType.DECODER, AttentionType.ENCODER_DECODER]:
|
|
raise NotImplementedError(
|
|
"Encoder self-attention is not implemented for TritonAttentionImpl"
|
|
)
|
|
self.attn_type = attn_type
|
|
self.fp8_dtype = current_platform.fp8_dtype()
|
|
|
|
self.sinks = sinks
|
|
if sinks is not None:
|
|
assert sinks.shape[0] == num_heads, (
|
|
"Sinks must have the same number of heads as the number of "
|
|
f"heads in the layer. Sinks shape: {sinks.shape}, "
|
|
f"num_heads: {num_heads}."
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: TritonAttentionMetadata,
|
|
output: torch.Tensor | None = None,
|
|
output_scale: torch.Tensor | None = None,
|
|
output_block_scale: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with Paged Attention impl. in Triton.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads, head_size]
|
|
key: shape = [num_tokens, num_kv_heads, head_size]
|
|
value: shape = [num_tokens, num_kv_heads, head_size]
|
|
kv_cache: shape =
|
|
[num_blocks, 2, block_size, num_kv_heads, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
assert output is not None, "Output tensor must be provided."
|
|
|
|
if output_block_scale is not None:
|
|
raise NotImplementedError(
|
|
"fused block_scale output quantization is not yet supported"
|
|
" for TritonAttentionImpl"
|
|
)
|
|
|
|
if attn_metadata is None:
|
|
# Profiling run.
|
|
return output.fill_(0)
|
|
|
|
assert attn_metadata.use_cascade is False
|
|
|
|
# IMPORTANT!
|
|
# NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
|
|
# eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
|
|
# in this method. For example, `view` and `slice` (or `[:n]`) operations
|
|
# are surprisingly slow even in the case they do not invoke any GPU ops.
|
|
# Minimize the PyTorch ops in this method as much as possible.
|
|
# Whenever making a change in this method, please benchmark the
|
|
# performance to make sure it does not introduce any overhead.
|
|
|
|
num_actual_tokens = attn_metadata.num_actual_tokens
|
|
key_cache, value_cache = kv_cache.unbind(1)
|
|
|
|
if (
|
|
self.kv_sharing_target_layer_name is None
|
|
and key is not None
|
|
and value is not None
|
|
):
|
|
# Reshape the input keys and values and store them in the cache.
|
|
# Skip this if sharing KV cache with an earlier attention layer.
|
|
if self.kv_cache_dtype.startswith("fp8"):
|
|
key_cache = key_cache.view(self.fp8_dtype)
|
|
value_cache = value_cache.view(self.fp8_dtype)
|
|
# triton kernel does not support uint8 kv_cache
|
|
# (because some explicit casts (e.g. float8_e4m3fnuz)
|
|
# are not supported)
|
|
triton_reshape_and_cache_flash(
|
|
key,
|
|
value,
|
|
key_cache,
|
|
value_cache,
|
|
attn_metadata.slot_mapping,
|
|
self.kv_cache_dtype,
|
|
layer._k_scale,
|
|
layer._v_scale,
|
|
)
|
|
|
|
if self.kv_cache_dtype.startswith("fp8"):
|
|
if key_cache.dtype != self.fp8_dtype:
|
|
key_cache = key_cache.view(self.fp8_dtype)
|
|
value_cache = value_cache.view(self.fp8_dtype)
|
|
assert layer._q_scale_float == 1.0, (
|
|
"A non 1.0 q_scale is not currently supported."
|
|
)
|
|
|
|
cu_seqlens_q = attn_metadata.query_start_loc
|
|
seqused_k = attn_metadata.seq_lens
|
|
max_seqlen_q = attn_metadata.max_query_len
|
|
max_seqlen_k = attn_metadata.max_seq_len
|
|
block_table = attn_metadata.block_table
|
|
|
|
descale_shape = (cu_seqlens_q.shape[0] - 1, key_cache.shape[2])
|
|
|
|
unified_attention(
|
|
q=query[:num_actual_tokens],
|
|
k=key_cache,
|
|
v=value_cache,
|
|
out=output[:num_actual_tokens],
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
max_seqlen_q=max_seqlen_q,
|
|
seqused_k=seqused_k,
|
|
max_seqlen_k=max_seqlen_k,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
alibi_slopes=self.alibi_slopes,
|
|
window_size=self.sliding_window,
|
|
block_table=block_table,
|
|
softcap=self.logits_soft_cap,
|
|
q_descale=None, # Not supported
|
|
k_descale=layer._k_scale.expand(descale_shape),
|
|
v_descale=layer._v_scale.expand(descale_shape),
|
|
sinks=self.sinks,
|
|
output_scale=output_scale,
|
|
)
|
|
|
|
return output
|