vllm/vllm/spec_decode/medusa_worker.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

138 lines
4.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import weakref
from typing import List, Optional, Set, Tuple
import torch
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.sequence import ExecuteModelRequest, SequenceGroupMetadata
from vllm.spec_decode.interfaces import SpeculativeProposals
from vllm.spec_decode.proposer_worker_base import NonLLMProposerWorkerBase
from vllm.spec_decode.top1_proposer import Top1Proposer
from vllm.worker.worker_base import DelegateWorkerBase
class MedusaWorker(NonLLMProposerWorkerBase, DelegateWorkerBase):
"""Worker for Medusa.
"""
def __init__(self, *args, **kwargs):
DelegateWorkerBase.__init__(self, *args, **kwargs)
# Lazy initialization list.
self._proposer: Top1Proposer
def init_device(self):
self.worker.init_device()
self._proposer = Top1Proposer(
weakref.proxy(self), # type: ignore[arg-type]
self.device,
self.vocab_size,
max_proposal_len=self.max_model_len,
)
def set_include_gpu_probs_tensor(self):
pass
def set_should_modify_greedy_probs_inplace(self):
pass
@torch.inference_mode()
def sampler_output(
self,
execute_model_req: ExecuteModelRequest,
sample_len: int,
# Unused parameter.
seq_ids_with_bonus_token_in_last_step: Set[int],
) -> Tuple[List[SamplerOutput], bool]:
"""Run the model forward pass to generate sample_len future tokens.
Returns the list of sampler output, one per layer, along with indicator
of whether torch tensor in sampler output need to be transposed in
latter sampler_output_to_torch logic.
For medusa worker, this indicator shall be False.
"""
self._raise_if_unsupported(execute_model_req)
seq_group_metadata_list = execute_model_req.seq_group_metadata_list
seq_lens, query_lens = self._prepare_input_tensors(
seq_group_metadata_list)
generators = self.model_runner.get_generators(
execute_model_req.finished_requests_ids)
sampling_metadata = SamplingMetadata.prepare(
seq_group_metadata_list, seq_lens, query_lens, self.device,
self.model_runner.pin_memory, generators)
model_outputs = self.model_runner.model.generate_proposals(
previous_hidden_states=execute_model_req.previous_hidden_states.
hidden_states,
sampling_metadata=sampling_metadata)
return model_outputs, False
def _prepare_input_tensors(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[List[int], List[int]]:
if not seq_group_metadata_list:
return [], []
seq_lens: List[int] = []
query_lens: List[int] = []
for seq_group_metadata in seq_group_metadata_list:
is_prompt = seq_group_metadata.is_prompt
for seq_data in seq_group_metadata.seq_data.values():
seq_data_len = seq_data.get_len()
if is_prompt:
context_len = seq_data.get_num_computed_tokens()
seq_len = min(
seq_data_len,
context_len + seq_group_metadata.token_chunk_size)
seq_lens.append(seq_len)
query_lens.append(seq_len - context_len)
else:
seq_lens.append(seq_data_len)
query_lens.append(1)
return seq_lens, query_lens
def get_spec_proposals(
self,
execute_model_req: ExecuteModelRequest,
seq_ids_with_bonus_token_in_last_step: Set[int],
) -> SpeculativeProposals:
"""Produce speculations given an input batch of sequences. The number of
speculative tokens per sequence is determined by max_proposal_len.
"""
return self._proposer.get_spec_proposals(
execute_model_req, seq_ids_with_bonus_token_in_last_step)
def _raise_if_unsupported(
self,
execute_model_req: ExecuteModelRequest,
) -> None:
"""MedusaWorker does not yet implement support for cache swap
operations or beam search.
"""
if any([
execute_model_req.blocks_to_swap_in,
execute_model_req.blocks_to_swap_out,
execute_model_req.blocks_to_copy
]):
raise NotImplementedError(
"MedusaWorker does not support cache operations")
if any(
len(seq_group_metadata.seq_data.keys()) != 1
for seq_group_metadata in
execute_model_req.seq_group_metadata_list):
raise NotImplementedError(
"MedusaWorker does not support beam search.")