vllm/csrc/quantization/activation_kernels.cu
Elvir Crnčević 7b03584de8
Silu v2 (#25074)
Signed-off-by: mgoin <mgoin64@gmail.com>
Signed-off-by: elvircrn <elvircrn@gmail.com>
Signed-off-by: Elvir Crnčević <elvircrn@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
2025-10-10 15:19:53 +00:00

653 lines
23 KiB
Plaintext

#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "core/math.hpp"
#include "../cuda_compat.h"
#include "dispatch_utils.h"
#include "quantization/w8a8/fp8/common.cuh"
#include <c10/util/Float8_e4m3fn.h>
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_fp8.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
#include <hip/hip_fp8.h>
typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
typedef __hip_bfloat16_raw __nv_bfloat16_raw;
#if defined(HIP_FP8_TYPE_OCP)
typedef __hip_fp8_e4m3 __nv_fp8_e4m3;
typedef __hip_fp8x4_e4m3 __nv_fp8x4_e4m3;
#else
// ROCm 6.2 fallback: only *_fnuz types exist
typedef __hip_fp8_e4m3_fnuz __nv_fp8_e4m3;
typedef __hip_fp8x4_e4m3_fnuz __nv_fp8x4_e4m3;
#endif
#endif
#include "core/registration.h"
namespace vllm {
template <typename T>
__device__ __forceinline__ T silu_kernel(const T& x) {
// x * sigmoid(x)
return (T)(((float)x) / (1.0f + expf((float)-x)));
}
// Activation and gating kernel template.
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
typename fp8_type>
__global__ void act_and_mul_quant_kernel(
fp8_type* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const float* scale, const int d) {
const int32_t blocks_per_token = gridDim.y;
const int32_t elems_per_128bit_load = (128 / 8) / sizeof(scalar_t);
// We don't expect the hidden dimension to exceed 32 bits so int32 should
// be safe here.
const int32_t tgt_elems_per_block = div_ceil(d, blocks_per_token);
const int32_t elems_per_block =
round_to_next_multiple_of(tgt_elems_per_block, elems_per_128bit_load);
const int32_t block_start = blockIdx.y * elems_per_block;
int32_t block_end = block_start + elems_per_block;
block_end = block_end > d ? d : block_end;
// token_idx is 64 bit to prevent 32 bit overflow when the number of tokens
// is very large
const int64_t token_idx = blockIdx.x;
const scalar_t* __restrict__ x_ptr = input + token_idx * 2 * d;
const scalar_t* __restrict__ y_ptr = input + token_idx * 2 * d + d;
fp8_type* __restrict__ out_ptr = out + token_idx * d;
// 128-bit vectorized code
const int32_t vec_loop_end =
round_to_previous_multiple_of(elems_per_128bit_load, block_end);
const int32_t vec_end_idx = vec_loop_end / elems_per_128bit_load;
const int32_t vec_start_idx = block_start / elems_per_128bit_load;
const int4* __restrict__ x_128bit_ptr = reinterpret_cast<const int4*>(x_ptr);
const int4* __restrict__ y_128bit_ptr = reinterpret_cast<const int4*>(y_ptr);
int2* __restrict__ out_128bit_ptr = reinterpret_cast<int2*>(out_ptr);
float inverted_scale = 1 / *scale;
#pragma unroll
for (int32_t vec_idx = vec_start_idx + threadIdx.x; vec_idx < vec_end_idx;
vec_idx += blockDim.x) {
const int4 x_128bit = VLLM_LDG(&x_128bit_ptr[vec_idx]);
const int4 y_128bit = VLLM_LDG(&y_128bit_ptr[vec_idx]);
using scalar_128bit_vec_t = std::array<scalar_t, elems_per_128bit_load>;
using scalar_64bit_vec_t = std::array<fp8_type, elems_per_128bit_load>;
scalar_64bit_vec_t out_vec;
const auto x_vec = reinterpret_cast<scalar_128bit_vec_t const&>(x_128bit);
const auto y_vec = reinterpret_cast<scalar_128bit_vec_t const&>(y_128bit);
#pragma unroll
for (int i = 0; i < elems_per_128bit_load; i++) {
out_vec[i] = scaled_fp8_conversion<true, fp8_type>(
ACT_FN(x_vec[i]) * y_vec[i], inverted_scale);
}
out_128bit_ptr[vec_idx] = reinterpret_cast<const int2&>(out_vec);
}
// Scalar cleanup code
if (block_end > vec_loop_end) {
for (int64_t idx = vec_loop_end + threadIdx.x; idx < block_end;
idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&x_ptr[idx]);
const scalar_t y = VLLM_LDG(&y_ptr[idx]);
out_ptr[idx] =
scaled_fp8_conversion<true, fp8_type>(ACT_FN(x) * y, inverted_scale);
}
}
}
__device__ __forceinline__ float silu(float x) {
return __fdividef(x, (1.f + expf(-x)));
}
__device__ __forceinline__ float2 silu2(float2 x) {
return make_float2(silu(x.x), silu(x.y));
}
__device__ __forceinline__ __nv_bfloat162 silu2_v2(float2 x) {
#ifndef USE_ROCM
return make_bfloat162(__float2bfloat16_rn(silu(x.x)),
__float2bfloat16_rn(silu(x.y)));
#else
return __float22bfloat162_rn(make_float2(silu(x.x), silu(x.y)));
#endif
}
#ifndef USE_ROCM
__device__ __forceinline__ float warp_max(float v) {
static constexpr unsigned FULL_MASK = 0xffffffffu;
for (int offset = 1; offset < WARP_SIZE; offset *= 2) {
v = fmaxf(v, __shfl_xor_sync(FULL_MASK, v, offset));
}
return v;
}
__device__ __forceinline__ __nv_bfloat16 warp_max(__nv_bfloat16 v) {
static constexpr unsigned FULL_MASK = 0xffffffffu;
for (int offset = 1; offset < WARP_SIZE; offset *= 2) {
v = __hmax(v, __shfl_xor_sync(FULL_MASK, v, offset));
}
return v;
}
#endif
template <typename T, typename U>
__device__ __forceinline__ void cp_async4(T* _smem_ptr, const U* _glob_ptr) {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
auto smem_ptr = reinterpret_cast<void*>(_smem_ptr);
auto glob_ptr = reinterpret_cast<const void*>(_glob_ptr);
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
#else
_smem_ptr[0] = _glob_ptr[0];
#endif
}
__device__ __forceinline__ void cp_async_fence() {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
asm volatile("cp.async.commit_group;\n" ::);
#else
#endif
}
template <int N>
__device__ __forceinline__ void cp_async_wait() {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
asm volatile("cp.async.wait_group %0;\n" ::"n"(N));
#else
#endif
}
template <>
__device__ __forceinline__ void cp_async_wait<0>() {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
asm volatile("cp.async.wait_all;\n" ::);
#else
#endif
}
__device__ __forceinline__ float clip(float v, float mmin, float mmax) {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
return fminf(mmax, fmaxf(v, mmin));
#else
#endif
}
__device__ __forceinline__ __nv_bfloat16 clip(__nv_bfloat16 v,
__nv_bfloat16 mmin,
__nv_bfloat16 mmax) {
return __hmin(mmax, __hmax(v, mmin));
}
__device__ __forceinline__ __nv_bfloat162 clip(__nv_bfloat162 v,
__nv_bfloat162 mmin,
__nv_bfloat162 mmax) {
return __hmin2(mmax, __hmax2(v, mmin));
}
// We use the following values for fp8 min/max:
// __nv_fp8_e4m3 = (-448, +448)
// __nv_fp8_e4m3uz = (-240.0, +240.0)
// It is currently assumed that only
template <class T>
constexpr __nv_bfloat16 get_fp8_max() {
static_assert(std::is_same_v<T, c10::Float8_e4m3fn> ||
std::is_same_v<T, c10::Float8_e4m3fnuz>);
if constexpr (std::is_same_v<T, c10::Float8_e4m3fn>) {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 17376});
} else {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 17264});
}
}
template <class T>
constexpr __nv_bfloat16 get_fp8_min() {
static_assert(std::is_same_v<T, c10::Float8_e4m3fn> ||
std::is_same_v<T, c10::Float8_e4m3fnuz>);
if constexpr (std::is_same_v<T, c10::Float8_e4m3fn>) {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 50144});
} else {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 50032});
}
}
template <typename Idx_t>
__device__ __forceinline__ int warp_expert_search(
int idx, int n, const Idx_t* __restrict__ input, Idx_t val) {
const Idx_t* input_ptr = input + idx;
int base_offset = 0;
for (;;) {
bool move_on = (idx < n && *input_ptr <= val);
unsigned mask = __ballot_sync(0xffffffff, move_on);
if (mask != 0xffffffffu) {
int last_lane = 31 - __clz(mask);
return base_offset + last_lane;
}
input_ptr += 32;
base_offset += 32;
idx += 32;
}
}
template <int num_parallel_tokens>
__device__ __forceinline__ void token_bounds(int32_t n_tokens,
int32_t worker_id,
int32_t& n_tokens_lower,
int32_t& n_tokens_upper) {
if (n_tokens < num_parallel_tokens && worker_id < n_tokens) {
if (worker_id >= num_parallel_tokens) return;
n_tokens_lower = worker_id;
n_tokens_upper = worker_id + 1;
} else {
int32_t chunk_size = n_tokens / num_parallel_tokens;
int32_t residual = n_tokens - chunk_size * num_parallel_tokens;
auto calc_id = [&](int32_t id) {
if (id < residual)
return min(n_tokens, id * (chunk_size + 1));
else
return min(n_tokens, id * chunk_size + residual);
};
n_tokens_lower = calc_id(worker_id);
n_tokens_upper = calc_id(worker_id + 1);
}
}
template <int BLOCK_COUNT, int SMEM_SIZE_BYTES_Y, typename fp8_type,
int THREADS, typename Idx_t, bool USE_UE8M0, int GROUP_SIZE = 128,
int NUM_STAGES = 3>
__global__ void silu_mul_fp8_quant_deep_gemm_kernel(
const __nv_bfloat16* __restrict__ _input, fp8_type* __restrict__ _y_q,
float* __restrict__ _y_s, const int32_t* __restrict__ tokens_per_expert,
// sizes
Idx_t E, Idx_t T, Idx_t H,
// strides (in elements)
Idx_t stride_i_e, Idx_t stride_i_t, Idx_t stride_i_h, Idx_t stride_yq_e,
Idx_t stride_yq_t, Idx_t stride_yq_h, Idx_t stride_ys_e, Idx_t stride_ys_t,
Idx_t stride_ys_g, Idx_t stride_counts_e) {
#ifndef USE_ROCM
static constexpr int NUM_WARPS = THREADS / WARP_SIZE;
static constexpr int LOAD_STAGE_SIZE = 2 * GROUP_SIZE / 8;
static constexpr int LOAD_STAGE_MOD = NUM_STAGES * LOAD_STAGE_SIZE;
static constexpr int COMPUTE_STAGE_SIZE = 2 * GROUP_SIZE / 4;
static constexpr int COMPUTE_STAGE_MOD = COMPUTE_STAGE_SIZE * NUM_STAGES;
extern __shared__ __align__(16) __int128_t smem_128[];
int* s_expert_offsets =
reinterpret_cast<int*>(smem_128 + (SMEM_SIZE_BYTES_Y / 16));
static constexpr __nv_bfloat16 fp8_min = get_fp8_min<fp8_type>();
static constexpr __nv_bfloat16 fp8_max = get_fp8_max<fp8_type>();
// We assign EPS with it's 16-bit unsigned counterpart to allow constexpr.
static constexpr __nv_bfloat16 EPS = (__nv_bfloat16_raw{.x = 11996});
int tid = threadIdx.x;
int warp_id = tid >> 5;
int lane_id = tid & 0x1f;
int running_sum{};
if (!warp_id) {
for (int i = 0; i < E; i += WARP_SIZE) {
bool valid = (i + threadIdx.x) < E;
int value =
(valid ? tokens_per_expert[i + threadIdx.x * stride_counts_e] : 0) +
(!lane_id ? running_sum : 0);
for (int offset = 1; offset < 32; offset *= 2) {
int n = __shfl_up_sync(0xFFFFFFFFu, value, offset);
if (lane_id >= offset) value += n;
}
if (valid) {
s_expert_offsets[i + threadIdx.x + 1] = value;
}
running_sum = __shfl_sync(0xFFFFFFFFu, value, WARP_SIZE - 1);
}
if (!lane_id) {
s_expert_offsets[0] = 0;
}
}
__syncthreads();
int32_t total_tokens = s_expert_offsets[E];
const int warp_position_yq = warp_id * (H / NUM_WARPS);
const int warp_position_scales = warp_id * (H / (GROUP_SIZE * NUM_WARPS));
// A single block will handle tokens_per_block tokens.
// Each block i iterates over tokens of a slice of n_tokens =
// expert_counts[i], with the size of chunk being
// (n_tokens / NUM_PARALLEL_TOKENS) + residual, instead of
// updiv(n_tokens, NUM_PARALLEL_TOKENS) for better scheduling.
// Each warp will get space to store its hidden dim for gate and up.
__int128_t* s_hidden_load = smem_128 + warp_id * ((2 * 128 / 8) * NUM_STAGES);
__int128_t* smem_load_ptr = s_hidden_load + lane_id;
const __nv_bfloat16 fp8_inv = __hdiv(__float2bfloat16(1.f), fp8_max);
int32_t compute_pipeline_offset_64 = 0;
int32_t load_stage_offset{};
const __nv_bfloat16 one_bf16 = __float2bfloat16_rn(1.f);
__int64_t* smem_compute_ptr = reinterpret_cast<__int64_t*>(smem_128) +
warp_id * (2 * (GROUP_SIZE / 4) * NUM_STAGES) +
lane_id;
__int64_t* s_gate64_ptr = smem_compute_ptr;
__int64_t* s_up64_ptr = smem_compute_ptr + GROUP_SIZE / 4;
int tokens_lower, tokens_upper;
token_bounds<BLOCK_COUNT>(total_tokens, blockIdx.x, tokens_lower,
tokens_upper);
Idx_t expert_id{}, expert_offset{}, next_expert_offset{};
int token_id = tokens_lower;
int32_t t_load{};
if (token_id < tokens_upper) {
expert_id = warp_expert_search<int>(lane_id, E, s_expert_offsets, token_id);
expert_offset = s_expert_offsets[expert_id];
next_expert_offset = s_expert_offsets[expert_id + 1];
} else {
// This thread block has no work to do.
return;
}
int t_load_bound = H / (GROUP_SIZE * NUM_WARPS);
Idx_t base_i = ((expert_id * stride_i_e) / 8) +
(token_id - expert_offset) * stride_i_t / 8;
const Idx_t gate_warp_offset =
warp_id * ((stride_i_h * H) / (8 * NUM_WARPS)) + (lane_id & 0b1111);
const __int128_t* input_128_ptr =
reinterpret_cast<const __int128_t*>(_input) + gate_warp_offset +
((lane_id < 16) ? 0 : ((H * stride_i_h) / 8));
__int128_t* load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
auto token_offset = token_id - expert_offset;
auto load_and_advance_y_pred = [&] {
if (t_load < t_load_bound) {
// Here we are simply continuing to load data
// from the current token.
auto smem_load_ptr_staged = smem_load_ptr + load_stage_offset;
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
// unnecessary ALU ops.
load_stage_offset += LOAD_STAGE_SIZE;
load_stage_offset %= LOAD_STAGE_MOD;
cp_async4(smem_load_ptr_staged, load_ptr);
load_ptr += GROUP_SIZE / 8;
++t_load;
} else if (token_id + 1 < tokens_upper) {
// We loaded everything from the current token, let's move on
// to the next one, and we checked that we have more tokens to load.
++token_id;
t_load = 0;
if (token_id >= next_expert_offset) {
// We need to find the next expert.
do {
// This is a loop because it's possible
// that some experts are assigned 0 tokens.
// NOTE: We are guaranteed that there's at least
// one more token left so we don't have to check for
// expert_id bounds.
++expert_id;
// This skips 1 memory read.
expert_offset = next_expert_offset;
next_expert_offset = s_expert_offsets[expert_id + 1];
} while (next_expert_offset == expert_offset);
base_i = expert_id * (stride_i_e / 8);
token_offset = 0;
load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
} else {
// We remain within the same expert, so just
// move by H/4 __int128_t (2 * H/8).
base_i += stride_yq_t / 4;
token_offset++;
}
load_ptr = const_cast<__int128_t*>(input_128_ptr + base_i);
auto smem_load_ptr_staged = smem_load_ptr + load_stage_offset;
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
// unnecessary ALU ops.
load_stage_offset += LOAD_STAGE_SIZE;
load_stage_offset %= LOAD_STAGE_MOD;
cp_async4(smem_load_ptr_staged, load_ptr);
load_ptr += GROUP_SIZE / 8;
++t_load;
}
// We fence even if there is nothing to load to simplify pipelining.
cp_async_fence();
};
// We need to warm-up the pipeline.
#pragma unroll
for (int i = 0; i < NUM_STAGES - 1; i++) {
load_and_advance_y_pred();
}
__nv_fp8x4_e4m3* y_q_base_ptr =
reinterpret_cast<__nv_fp8x4_e4m3*>(_y_q) + lane_id;
auto y_scale_base_ptr = _y_s + warp_position_scales * stride_ys_g;
for (auto j = tokens_lower; j < tokens_upper; j++) {
const Idx_t base_ys = expert_id * stride_ys_e;
auto y_s_ptr = y_scale_base_ptr + base_ys + token_offset * stride_ys_t;
__nv_fp8x4_e4m3* y_q_ptr =
y_q_base_ptr + (expert_id * stride_yq_e + token_offset * stride_yq_t +
warp_position_yq * stride_yq_h) /
4;
const int COMPUTE_LIMIT = H / (GROUP_SIZE * NUM_WARPS);
for (int i = 0; i < COMPUTE_LIMIT; i++) {
cp_async_wait<NUM_STAGES - 2>();
__syncthreads();
load_and_advance_y_pred();
__int64_t* gate64_ptr = s_gate64_ptr + compute_pipeline_offset_64;
__int64_t* up64_ptr = s_up64_ptr + compute_pipeline_offset_64;
// COMPUTE_STAGE_SIZE/MOD must also be constexpr!
compute_pipeline_offset_64 += COMPUTE_STAGE_SIZE;
compute_pipeline_offset_64 %= COMPUTE_STAGE_MOD;
__int64_t gate64 = *gate64_ptr;
__int64_t up64 = *up64_ptr;
// Compute
__nv_bfloat162 res[2];
__nv_bfloat162* s_up_comp = reinterpret_cast<__nv_bfloat162*>(&up64);
__nv_bfloat162* s_gate_comp = reinterpret_cast<__nv_bfloat162*>(&gate64);
#pragma unroll
for (int32_t k = 0; k < 2; ++k) {
__nv_bfloat162 gate = silu2_v2(__bfloat1622float2(s_gate_comp[k]));
res[k] = __hmul2(gate, s_up_comp[k]);
}
auto _y_max2 = __hmax2(__habs2(res[0]), __habs2(res[1]));
_y_max2.x = __hmax(__hmax(_y_max2.x, _y_max2.y), EPS);
__nv_bfloat16 y_s = __hmul(warp_max(_y_max2.x), fp8_inv);
if constexpr (USE_UE8M0) {
y_s = hexp2(hceil(hlog2(y_s)));
}
__nv_bfloat16 inv_y = __hdiv(one_bf16, y_s);
auto y_s2 = make_bfloat162(inv_y, inv_y);
#pragma unroll
for (int32_t k = 0; k < 2; ++k) {
res[k] = clip(__hmul2(res[k], y_s2), __bfloat162bfloat162(fp8_min),
__bfloat162bfloat162(fp8_max));
}
*y_q_ptr = __nv_fp8x4_e4m3(res[0], res[1]);
y_q_ptr += WARP_SIZE * stride_yq_h;
if (!lane_id) {
*y_s_ptr = y_s;
y_s_ptr += stride_ys_g;
}
}
}
#endif
}
} // namespace vllm
// Launch activation, gating, and quantize kernel.
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens, num_tokens > 16 ? num_tokens > 32 ? 1 : 2 : 4); \
dim3 block(std::min(d, 512)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "act_and_mul_kernel", [&] { \
VLLM_DISPATCH_FP8_TYPES( \
out.scalar_type(), "fused_add_rms_norm_kernel_fp8_type", [&] { \
vllm::act_and_mul_quant_kernel<scalar_t, KERNEL<scalar_t>, \
fp8_t> \
<<<grid, block, 0, stream>>>(out.data_ptr<fp8_t>(), \
input.data_ptr<scalar_t>(), \
scale.data_ptr<float>(), d); \
}); \
});
void silu_and_mul_quant(torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., 2 * d]
torch::Tensor& scale) {
TORCH_CHECK(out.dtype() == torch::kFloat8_e4m3fn ||
out.dtype() == torch::kFloat8_e4m3fnuz);
TORCH_CHECK(input.dtype() == torch::kFloat16 ||
input.dtype() == torch::kBFloat16);
TORCH_CHECK(input.size(-1) % 2 == 0);
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
}
void persistent_masked_m_silu_mul_quant(
const at::Tensor& input, // (E, T, 2*H)
const at::Tensor& tokens_per_expert, // (E)
at::Tensor& y_q, // (E, T, H) [OUT]
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
bool use_ue8m0) {
#ifndef USE_ROCM
// This kernel currently only supports H % 128 == 0 and assumes a
// fixed GROUP_SIZE of 128.
TORCH_CHECK(input.dtype() == torch::kBFloat16);
TORCH_CHECK(y_q.dtype() == torch::kFloat8_e4m3fn ||
y_q.dtype() == torch::kFloat8_e4m3fnuz);
TORCH_CHECK(y_s.dtype() == torch::kFloat32);
TORCH_CHECK(input.size(-1) % 256 == 0);
using Idx_t = int64_t;
Idx_t E = input.size(0);
Idx_t T = input.size(1);
Idx_t H = input.size(2) / 2;
Idx_t stride_i_e = input.stride(0);
Idx_t stride_i_t = input.stride(1);
Idx_t stride_i_h = input.stride(2);
Idx_t stride_yq_e = y_q.stride(0);
Idx_t stride_yq_t = y_q.stride(1);
Idx_t stride_yq_h = y_q.stride(2);
Idx_t stride_ys_e = y_s.stride(0);
Idx_t stride_ys_t = y_s.stride(1);
Idx_t stride_ys_g = y_s.stride(2);
Idx_t stride_counts_e = tokens_per_expert.stride(0);
static constexpr int GROUP_SIZE = 128;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
#define KERNEL(BLOCK_COUNT, USE_UE8M0, THREAD_COUNT, STAGES) \
static constexpr int NUM_WARPS = THREAD_COUNT / WARP_SIZE; \
int sms = SILU_V2_BLOCK_COUNT; \
static constexpr int max_shared_mem_bytes = \
GROUP_SIZE * 2 * STAGES * NUM_WARPS * 2; \
dim3 grid(sms), block(THREAD_COUNT); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
VLLM_DISPATCH_FP8_TYPES( \
y_q.scalar_type(), "silu_mul_fp8_quant_deep_gemm_kernel", [&] { \
vllm::silu_mul_fp8_quant_deep_gemm_kernel< \
BLOCK_COUNT, max_shared_mem_bytes, fp8_t, THREAD_COUNT, Idx_t, \
USE_UE8M0, GROUP_SIZE, STAGES> \
<<<grid, block, max_shared_mem_bytes + (E + 1) * 16, stream>>>( \
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
reinterpret_cast<int32_t*>(tokens_per_expert.data_ptr()), E, \
T, H, stride_i_e, stride_i_t, stride_i_h, stride_yq_e, \
stride_yq_t, stride_yq_h, stride_ys_e, stride_ys_t, \
stride_ys_g, stride_counts_e); \
});
static constexpr int SILU_V2_BLOCK_COUNT = 132 * 32;
if (!use_ue8m0) {
if (H >= 4096) {
static constexpr int NUM_STAGES = 4;
static constexpr int THREAD_COUNT = 256;
KERNEL(SILU_V2_BLOCK_COUNT, false, THREAD_COUNT, NUM_STAGES);
} else {
static constexpr int THREAD_COUNT = 32;
KERNEL(SILU_V2_BLOCK_COUNT, false, THREAD_COUNT, 2);
}
} else {
if (H >= 4096) {
static constexpr int NUM_STAGES = 4;
static constexpr int THREAD_COUNT = 256;
KERNEL(SILU_V2_BLOCK_COUNT, true, THREAD_COUNT, NUM_STAGES);
} else {
static constexpr int THREAD_COUNT = 32;
KERNEL(SILU_V2_BLOCK_COUNT, true, THREAD_COUNT, 2);
}
}
#endif
}