vllm/vllm/logging_utils/dump_input.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

84 lines
2.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import contextlib
import enum
import json
import torch
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.metrics.stats import SchedulerStats
from vllm.version import __version__ as VLLM_VERSION
logger = init_logger(__name__)
def prepare_object_to_dump(obj) -> str:
if isinstance(obj, str):
return f"'{obj}'" # Double quotes
elif isinstance(obj, dict):
dict_str = ", ".join(
{f"{str(k)}: {prepare_object_to_dump(v)}" for k, v in obj.items()}
)
return f"{{{dict_str}}}"
elif isinstance(obj, list):
return f"[{', '.join([prepare_object_to_dump(v) for v in obj])}]"
elif isinstance(obj, set):
return f"[{', '.join([prepare_object_to_dump(v) for v in list(obj)])}]"
# return [prepare_object_to_dump(v) for v in list(obj)]
elif isinstance(obj, tuple):
return f"[{', '.join([prepare_object_to_dump(v) for v in obj])}]"
elif isinstance(obj, enum.Enum):
return repr(obj)
elif isinstance(obj, torch.Tensor):
# We only print the 'draft' of the tensor to not expose sensitive data
# and to get some metadata in case of CUDA runtime crashed
return f"Tensor(shape={obj.shape}, device={obj.device},dtype={obj.dtype})"
elif hasattr(obj, "anon_repr"):
return obj.anon_repr()
elif hasattr(obj, "__dict__"):
items = obj.__dict__.items()
dict_str = ", ".join(
[f"{str(k)}={prepare_object_to_dump(v)}" for k, v in items]
)
return f"{type(obj).__name__}({dict_str})"
else:
# Hacky way to make sure we can serialize the object in JSON format
try:
return json.dumps(obj)
except (TypeError, OverflowError):
return repr(obj)
def dump_engine_exception(
config: VllmConfig,
scheduler_output: SchedulerOutput,
scheduler_stats: SchedulerStats | None,
):
# NOTE: ensure we can log extra info without risking raises
# unexpected errors during logging
with contextlib.suppress(Exception):
_dump_engine_exception(config, scheduler_output, scheduler_stats)
def _dump_engine_exception(
config: VllmConfig,
scheduler_output: SchedulerOutput,
scheduler_stats: SchedulerStats | None,
):
logger.error(
"Dumping input data for V1 LLM engine (v%s) with config: %s, ",
VLLM_VERSION,
config,
)
try:
dump_obj = prepare_object_to_dump(scheduler_output)
logger.error("Dumping scheduler output for model execution: %s", dump_obj)
if scheduler_stats:
logger.error("Dumping scheduler stats: %s", scheduler_stats)
except Exception:
logger.exception("Error preparing object to dump")