Harry Mellor 97d1c99302
Rename clashing method names for vLLM model protocol (#27583)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-12 19:14:33 -08:00

897 lines
30 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable, Mapping
from typing import Annotated, Literal, TypeAlias
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import LayerNorm
from transformers.models.qwen2_vl import Qwen2VLProcessor
from vllm.attention.backends.registry import AttentionBackendEnum
from vllm.attention.layer import (
check_upstream_fa_availability,
maybe_get_vit_flash_attn_backend,
)
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.distributed import utils as dist_utils
from vllm.distributed.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import (
MultiModalEmbeddings,
SupportsLoRA,
SupportsMultiModal,
SupportsPP,
)
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
from vllm.model_executor.models.qwen2_5_vl import Qwen2_5_VisionAttention
from vllm.model_executor.models.qwen2_vl import (
Qwen2VLDummyInputsBuilder,
Qwen2VLMultiModalProcessor,
Qwen2VLProcessingInfo,
)
from vllm.model_executor.models.utils import (
AutoWeightsLoader,
WeightsMapper,
init_vllm_registered_model,
maybe_prefix,
)
from vllm.model_executor.models.vision import get_vit_attn_backend
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalDataDict
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.dotsocr import DotsOCRConfig, DotsVisionConfig
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .vision import run_dp_sharded_mrope_vision_model
IMAGE_TOKEN = "<|imgpad|>"
class DotsOCRImagePixelInputs(TensorSchema):
"""
Dimensions:
- np: The total number of patches over each image over each prompt in
the batch
- ni: Number of images
- cps: Number of channels * patch_size * patch_size
"""
type: Literal["pixel_values"]
pixel_values: Annotated[torch.Tensor, TensorShape("np", "cps")]
image_grid_thw: Annotated[torch.Tensor, TensorShape("ni", 3)]
class DotsOCRImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- nf: Number of image features
- hs: Hidden size
- ni: Number of images
"""
type: Literal["image_embeds"]
image_embeds: Annotated[torch.Tensor, TensorShape("nf", "hs")]
image_grid_thw: Annotated[torch.Tensor, TensorShape("ni", 3)]
DotsOCRImageInputs: TypeAlias = DotsOCRImagePixelInputs | DotsOCRImageEmbeddingInputs
class DotsOCRDummyInputsBuilder(Qwen2VLDummyInputsBuilder):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
return IMAGE_TOKEN * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = self.info.get_image_size_with_most_features( # noqa: E501
)
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=target_width,
height=target_height,
num_images=num_images,
overrides=image_overrides,
),
}
class DotsOCRProcessingInfo(Qwen2VLProcessingInfo):
def get_hf_config(self) -> DotsOCRConfig:
config = self.ctx.get_hf_config()
if not config.__class__.__name__ == "DotsOCRConfig":
raise TypeError(f"Expected DotsOCRConfig, got {type(config)}")
if hasattr(config, "vision_config") and isinstance(config.vision_config, dict):
config.vision_config = DotsVisionConfig(**config.vision_config)
return config
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": None}
def get_mm_max_tokens_per_item(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> Mapping[str, int]:
max_image_tokens = self.get_max_image_tokens()
return {"image": max_image_tokens}
def get_hf_processor(
self,
**kwargs: object,
) -> Qwen2VLProcessor:
self.get_tokenizer().image_token = IMAGE_TOKEN # Ensure image token is set
processor = self.ctx.get_hf_processor(
Qwen2VLProcessor,
**kwargs,
)
processor.image_token = IMAGE_TOKEN
processor.video_token = "<|video_pad|>"
return processor
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(
tensor: torch.Tensor, freqs: torch.Tensor
) -> torch.Tensor:
orig_dtype = tensor.dtype
tensor = tensor.float()
cos = freqs.cos()
sin = freqs.sin()
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
output = (tensor * cos) + (rotate_half(tensor) * sin)
output = output.to(orig_dtype)
return output
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class PatchMerger(nn.Module):
def __init__(
self,
dim: int,
context_dim: int,
spatial_merge_size: int = 2,
pre_norm="layernorm",
prefix: str = "",
use_data_parallel: bool = False,
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
self.pre_norm = pre_norm
if self.pre_norm == "layernorm":
self.ln_q = LayerNorm(context_dim, eps=1e-6)
elif self.pre_norm == "rmsnorm":
self.ln_q = RMSNorm(context_dim, eps=1e-6)
self.mlp = nn.Sequential(
ColumnParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
return_bias=False,
prefix=f"{prefix}.0",
disable_tp=use_data_parallel,
),
nn.GELU(),
RowParallelLinear(
self.hidden_size,
dim,
bias=True,
return_bias=False,
prefix=f"{prefix}.2",
disable_tp=use_data_parallel,
),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.pre_norm:
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
else:
x = self.mlp(x.view(-1, self.hidden_size))
return x
class DotsVisionAttention(nn.Module):
def __init__(
self,
config,
dim: int,
num_heads: int = 16,
bias: bool = True,
*,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
) -> None:
super().__init__()
self.embed_dim = dim
self.tp_size = (
1 if use_data_parallel else get_tensor_model_parallel_world_size()
)
self.tp_rank = 0 if use_data_parallel else get_tensor_model_parallel_rank()
self.hidden_size_per_attention_head = dist_utils.divide(dim, num_heads)
self.num_attention_heads_per_partition = dist_utils.divide(
num_heads, self.tp_size
)
# qkv/proj follow Qwen2-VL style; bias controlled by arg
self.qkv = QKVParallelLinear(
hidden_size=dim,
head_size=self.hidden_size_per_attention_head,
total_num_heads=num_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv",
disable_tp=use_data_parallel,
)
self.proj = RowParallelLinear(
input_size=dim,
output_size=dim,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.proj",
disable_tp=use_data_parallel,
)
# Select attention backend
self.attn_backend = get_vit_attn_backend(
self.hidden_size_per_attention_head,
torch.get_default_dtype(),
attn_backend_override=attn_backend_override,
)
self.use_upstream_fa = False
self.attn_backend, self.flash_attn_varlen_func = (
maybe_get_vit_flash_attn_backend(
self.attn_backend,
self.use_upstream_fa,
attn_backend_override=attn_backend_override,
)
)
if self.attn_backend not in {
AttentionBackendEnum.FLASH_ATTN,
AttentionBackendEnum.TORCH_SDPA,
AttentionBackendEnum.XFORMERS,
AttentionBackendEnum.ROCM_AITER_FA,
}:
raise RuntimeError(
f"Unsupported vision attention backend: {self.attn_backend}"
)
self.is_flash_attn_backend = self.attn_backend in {
AttentionBackendEnum.FLASH_ATTN,
AttentionBackendEnum.ROCM_AITER_FA,
}
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor | None = None,
*,
max_seqlen: int | None = None,
seqlens: list[int] | None = None,
) -> torch.Tensor:
# [S, C] -> [S, B=1, C]
x = hidden_states.unsqueeze(1)
x, _ = self.qkv(x)
q, k, v = Qwen2_5_VisionAttention.split_qkv(self, x)
bs = q.shape[1]
# [S,B,H,D] -> [B,S,H,D]
q = q.permute(1, 0, 2, 3).contiguous()
k = k.permute(1, 0, 2, 3).contiguous()
v = v.permute(1, 0, 2, 3).contiguous()
if rotary_pos_emb is not None:
qk_concat = torch.cat([q, k], dim=0)
qk_rotated = apply_rotary_pos_emb_vision(qk_concat, rotary_pos_emb)
q, k = torch.chunk(qk_rotated, 2, dim=0)
if self.is_flash_attn_backend:
q_ = q.reshape(bs * q.shape[1], q.shape[2], q.shape[3])
k_ = k.reshape(bs * k.shape[1], k.shape[2], k.shape[3])
v_ = v.reshape(bs * v.shape[1], v.shape[2], v.shape[3])
output = self.flash_attn_varlen_func(
q_,
k_,
v_,
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
dropout_p=0.0,
causal=False,
)
context_layer = output.view(
bs,
-1,
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
elif self.attn_backend == AttentionBackendEnum.TORCH_SDPA:
outputs = []
for i in range(1, len(cu_seqlens)):
s = int(cu_seqlens[i - 1])
e = int(cu_seqlens[i])
q_i = q[:, s:e].permute(0, 2, 1, 3)
k_i = k[:, s:e].permute(0, 2, 1, 3)
v_i = v[:, s:e].permute(0, 2, 1, 3)
out_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
out_i = out_i.permute(0, 2, 1, 3)
outputs.append(out_i)
context_layer = torch.cat(outputs, dim=1) if outputs else q[:, :0]
elif self.attn_backend == AttentionBackendEnum.XFORMERS:
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
attn_bias = BlockDiagonalMask.from_seqlens(
q_seqlen=seqlens, kv_seqlen=None, device=q.device
)
context_layer = xops.memory_efficient_attention_forward(
q, k, v, attn_bias=attn_bias, p=0, scale=None
)
else:
raise RuntimeError("Unsupported attention backend")
# [B,S,H,D] -> [S,B,H*D] -> [S, C]
context_layer = context_layer.permute(1, 0, 2, 3).contiguous()
context_layer = context_layer.view(context_layer.shape[0], bs, -1)
out, _ = self.proj(context_layer)
return out.squeeze(1)
class DotsSwiGLUFFN(nn.Module):
def __init__(
self,
config,
*,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
):
super().__init__()
hidden_features = config.intermediate_size
in_features = config.embed_dim
bias = config.use_bias
# Referenced aimv2.py AIMv2SwiGLUFFN
self.fc13 = MergedColumnParallelLinear(
in_features,
[hidden_features] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.fc13",
disable_tp=use_data_parallel,
)
self.fc2 = RowParallelLinear(
hidden_features,
in_features,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
disable_tp=use_data_parallel,
)
self.act_fn = SiluAndMul()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.fc13(x)
x = self.act_fn(x)
x, _ = self.fc2(x)
return x
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
("fc13", "fc1", 0),
("fc13", "fc3", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class DotsPatchEmbed(nn.Module):
def __init__(self, config):
super().__init__()
self.num_channels = config.num_channels
self.patch_size = config.patch_size
self.temporal_patch_size = config.temporal_patch_size
self.embed_dim = config.embed_dim
self.config = config
self.proj = nn.Conv2d(
config.num_channels,
config.embed_dim,
kernel_size=(config.patch_size, config.patch_size),
stride=(config.patch_size, config.patch_size),
)
self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
x = x.view(
-1,
self.num_channels,
self.temporal_patch_size,
self.patch_size,
self.patch_size,
)[:, :, 0]
x = self.proj(x).view(-1, self.embed_dim)
x = self.norm(x)
return x
class DotsViTPreprocessor(nn.Module):
def __init__(self, config):
super().__init__()
self.patch_h = config.patch_size
self.patch_w = config.patch_size
self.embed_dim = config.embed_dim
self.config = config
self.patchifier = DotsPatchEmbed(config)
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
tokens = self.patchifier(x, grid_thw)
return tokens
class DotsVisionBlock(nn.Module):
def __init__(
self,
config,
*,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
):
super().__init__()
self.attn = DotsVisionAttention(
config,
config.embed_dim,
num_heads=config.num_attention_heads,
bias=config.use_bias,
quant_config=quant_config,
prefix=f"{prefix}.attn",
use_data_parallel=use_data_parallel,
attn_backend_override=attn_backend_override,
)
self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
self.mlp = DotsSwiGLUFFN(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
use_data_parallel=use_data_parallel,
)
self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
*,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor,
max_seqlen: int | None = None,
seqlens: list[int] | None = None,
) -> torch.Tensor:
hidden_states = hidden_states + self.attn(
self.norm1(hidden_states),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
max_seqlen=max_seqlen,
seqlens=seqlens,
)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
class DotsVisionTransformer(nn.Module):
def __init__(
self,
config: DotsVisionConfig,
quant_config: QuantizationConfig | None = None,
*,
num_hidden_layers_override: int | None = None,
require_post_norm: bool | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
) -> None:
super().__init__()
self.config = config
self.spatial_merge_size = config.spatial_merge_size
self.patch_embed = DotsViTPreprocessor(config)
head_dim = config.embed_dim // config.num_attention_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.attn_backend = get_vit_attn_backend(
head_size=head_dim,
dtype=torch.get_default_dtype(),
attn_backend_override=attn_backend_override,
)
if (
self.attn_backend != AttentionBackendEnum.FLASH_ATTN
and check_upstream_fa_availability(torch.get_default_dtype())
):
self.attn_backend = AttentionBackendEnum.FLASH_ATTN
self.out_hidden_size = config.hidden_size
# Keep blocks for compatibility with other vision towers
num_layers = (
config.num_hidden_layers
if num_hidden_layers_override is None
else num_hidden_layers_override
)
self.blocks = nn.ModuleList(
[
DotsVisionBlock(
config,
quant_config=quant_config,
prefix=f"{prefix}.blocks.{i}",
use_data_parallel=use_data_parallel,
attn_backend_override=attn_backend_override,
)
for i in range(num_layers)
]
)
if require_post_norm is None:
require_post_norm = len(self.blocks) == config.num_hidden_layers
if require_post_norm and self.config.post_norm:
self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
else:
self.post_trunk_norm = None
self.merger = PatchMerger(
dim=config.hidden_size,
context_dim=config.embed_dim,
spatial_merge_size=config.spatial_merge_size,
use_data_parallel=use_data_parallel,
)
@property
def dtype(self) -> torch.dtype:
return self.patch_embed.patchifier.proj.weight.dtype
@property
def device(self) -> torch.device:
return self.patch_embed.patchifier.proj.weight.device
def get_pos_ids_by_grid(self, grid_thw: list[list[int]]) -> list[torch.Tensor]:
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
return pos_ids
def rot_pos_emb(self, grid_thw: list[list[int]]) -> torch.Tensor:
pos_ids = self.get_pos_ids_by_grid(grid_thw)
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = max(max(h, w) for _, h, w in grid_thw)
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def compute_attn_mask_seqlen(
self, cu_seqlens: torch.Tensor
) -> tuple[int | None, list[int] | None]:
max_seqlen, seqlens = None, None
if (
self.attn_backend == AttentionBackendEnum.FLASH_ATTN
or self.attn_backend == AttentionBackendEnum.ROCM_AITER_FA
):
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
elif self.attn_backend == AttentionBackendEnum.XFORMERS:
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
return max_seqlen, seqlens
def forward(
self, hidden_states: torch.Tensor, grid_thw: list[list[int]]
) -> torch.Tensor:
rotary_pos_emb = self.rot_pos_emb(grid_thw)
# Convert grid_thw to tensor (always expecting list format now)
grid_thw = torch.tensor(grid_thw, device=hidden_states.device, dtype=torch.long)
hidden_states = hidden_states.to(self.dtype)
hidden_states = self.patch_embed(hidden_states, grid_thw)
cu_seqlens = torch.repeat_interleave(
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
).cumsum(
dim=0,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = torch.cat([cu_seqlens.new_zeros(1), cu_seqlens])
max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
for blk in self.blocks:
hidden_states = blk(
hidden_states,
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
max_seqlen=max_seqlen,
seqlens=seqlens,
)
if self.post_trunk_norm is not None:
hidden_states = self.post_trunk_norm(hidden_states)
hidden_states = self.merger(hidden_states)
return hidden_states
@MULTIMODAL_REGISTRY.register_processor(
Qwen2VLMultiModalProcessor,
info=DotsOCRProcessingInfo,
dummy_inputs=DotsOCRDummyInputsBuilder,
)
class DotsOCRForCausalLM(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
merge_by_field_config = True
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
".attn.qkv_proj.": ".attn.qkv.",
".attn.out_proj.": ".attn.proj.",
},
orig_to_new_prefix={
"lm_head.": "language_model.lm_head.",
"model.": "language_model.model.",
},
)
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
".attn.qkv": [".attn.qkv"],
"fc13": ["fc1", "fc3"],
}
supports_encoder_tp_data = True
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return "<|img|><|imgpad|><|endofimg|>"
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
self.config: DotsOCRConfig = vllm_config.model_config.hf_config
self.quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
if isinstance(self.config.vision_config, dict):
vision_config = DotsVisionConfig(**self.config.vision_config)
self.config.vision_config = vision_config
else:
vision_config = self.config.vision_config
attn_backend_override = (
multimodal_config.mm_encoder_attn_backend
if multimodal_config is not None
else None
)
self.vision_tower = DotsVisionTransformer(
vision_config,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "vision_tower"),
use_data_parallel=self.use_data_parallel,
attn_backend_override=attn_backend_override,
)
self.language_model: Qwen2ForCausalLM = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=self.config,
prefix=maybe_prefix(prefix, "language_model"),
architectures=["Qwen2ForCausalLM"],
)
def _parse_and_validate_image_input(
self, **kwargs: object
) -> DotsOCRImageInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
image_grid_thw = kwargs.pop("image_grid_thw", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
return DotsOCRImagePixelInputs(
type="pixel_values",
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
)
if image_embeds is not None:
return DotsOCRImageEmbeddingInputs(
type="image_embeds",
image_embeds=image_embeds,
image_grid_thw=image_grid_thw,
)
def _process_image_input(
self, image_input: DotsOCRImageInputs
) -> tuple[torch.Tensor, ...]:
grid_thw = image_input["image_grid_thw"]
assert grid_thw.ndim == 2
grid_thw_list = grid_thw.tolist()
if image_input["type"] == "image_embeds":
image_embeds = image_input["image_embeds"].type(self.vision_tower.dtype)
else:
pixel_values = image_input["pixel_values"].type(self.vision_tower.dtype)
if self.use_data_parallel:
return run_dp_sharded_mrope_vision_model(
self.vision_tower,
pixel_values,
grid_thw_list,
rope_type="rope_3d",
)
else:
image_embeds = self.vision_tower(pixel_values, grid_thw_list)[
:, : self.config.hidden_size
]
# Split concatenated embeddings for each image item.
merge_size = self.vision_tower.spatial_merge_size
sizes = (
torch.tensor(grid_thw_list, dtype=torch.long).prod(-1)
// (merge_size * merge_size)
).tolist()
return image_embeds.split(sizes)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
vision_embeddings = self._process_image_input(image_input)
return vision_embeddings
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor | IntermediateTensors:
if intermediate_tensors is not None:
inputs_embeds = None
elif inputs_embeds is None:
vision_embeddings = self.embed_multimodal(**kwargs)
inputs_embeds = self.embed_input_ids(
input_ids,
vision_embeddings,
is_multimodal=input_ids == self.config.image_token_id,
)
input_ids = None
hidden_states = self.language_model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="vision_tower.merger",
tower_model="vision_tower.",
)