mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 10:38:01 +08:00
1148 lines
41 KiB
Python
1148 lines
41 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
#
|
|
# Copyright 2025 the LLAMA4, Meta Inc., vLLM, and HuggingFace Inc. team.
|
|
# All rights reserved.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
from collections.abc import Iterable, Mapping
|
|
from itertools import tee
|
|
from typing import Annotated, Literal
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import BatchFeature, Llama4Config, Llama4VisionConfig
|
|
from transformers.image_utils import SizeDict
|
|
from transformers.models.llama4 import Llama4Processor
|
|
from transformers.models.llama4.image_processing_llama4_fast import (
|
|
find_supported_resolutions,
|
|
get_best_fit,
|
|
)
|
|
|
|
from vllm.attention.layer import MultiHeadAttention
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.model_loader.utils import initialize_model
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
)
|
|
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
InputProcessingContext,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
PromptUpdateDetails,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import (
|
|
MixtureOfExperts,
|
|
MultiModalEmbeddings,
|
|
SupportsEagle3,
|
|
SupportsLoRA,
|
|
SupportsMultiModal,
|
|
SupportsPP,
|
|
)
|
|
from .llama4 import Llama4ForCausalLM
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
maybe_prefix,
|
|
)
|
|
from .vision import run_dp_sharded_vision_model
|
|
|
|
|
|
class Llama4ImagePatchInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- batch_size: Batch size
|
|
- total_num_chunks: Batch size * number of chunks
|
|
- num_channels: Number of channels
|
|
- image_size: Size of each image
|
|
"""
|
|
|
|
type: Literal["pixel_values"] = "pixel_values"
|
|
|
|
pixel_values: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("total_num_chunks", "num_channels", "image_size", "image_size"),
|
|
]
|
|
|
|
patches_per_image: Annotated[torch.Tensor, TensorShape("batch_size")]
|
|
"""
|
|
The number of total patches for each image in the batch.
|
|
|
|
This is used to split the embeddings which has the first two dimensions
|
|
flattened just like `pixel_values`.
|
|
"""
|
|
|
|
aspect_ratios: Annotated[torch.Tensor, TensorShape("batch_size", 2)]
|
|
"""
|
|
A list of aspect ratios corresponding to the number of tiles
|
|
in each dimension that each image in the batch corresponds to.
|
|
Each aspect ratio is a pair (ratio_h, ratio_w).
|
|
"""
|
|
|
|
|
|
class Llama4VisionMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_size: int,
|
|
intermediate_size: int,
|
|
output_size: int,
|
|
bias: bool,
|
|
output_activation: bool,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.fc1 = ColumnParallelLinear(
|
|
input_size=input_size,
|
|
output_size=intermediate_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc1",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.fc2 = RowParallelLinear(
|
|
input_size=intermediate_size,
|
|
output_size=output_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc2",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.activation_fn = nn.GELU()
|
|
self.output_activation = output_activation
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states, _ = self.fc2(hidden_states)
|
|
if self.output_activation:
|
|
return self.activation_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Llama4MultiModalProjector(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.linear_1 = ColumnParallelLinear(
|
|
input_size=config.vision_config.vision_output_dim,
|
|
output_size=config.text_config.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
gather_output=True,
|
|
prefix=f"{prefix}.linear_1",
|
|
)
|
|
|
|
def forward(self, image_features):
|
|
hidden_states, _ = self.linear_1(image_features)
|
|
return hidden_states
|
|
|
|
|
|
def pixel_shuffle(input_tensor, shuffle_ratio):
|
|
# input_tensor: [batch_size, num_patches, channels]
|
|
batch_size, num_patches, channels = input_tensor.shape
|
|
patch_size = int(math.sqrt(num_patches))
|
|
|
|
input_tensor = input_tensor.view(batch_size, patch_size, patch_size, -1)
|
|
batch_size, height, width, channels = input_tensor.size()
|
|
|
|
reshaped_tensor = input_tensor.view(
|
|
batch_size, height, int(width * shuffle_ratio), int(channels / shuffle_ratio)
|
|
)
|
|
reshaped_tensor = reshaped_tensor.permute(0, 2, 1, 3).contiguous()
|
|
|
|
reshaped_tensor = reshaped_tensor.view(
|
|
batch_size,
|
|
int(height * shuffle_ratio),
|
|
int(width * shuffle_ratio),
|
|
int(channels / (shuffle_ratio**2)),
|
|
)
|
|
reshaped_tensor = reshaped_tensor.permute(0, 2, 1, 3).contiguous()
|
|
|
|
output_tensor = reshaped_tensor.view(batch_size, -1, reshaped_tensor.shape[-1])
|
|
return output_tensor
|
|
|
|
|
|
class Llama4VisionPixelShuffleMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.pixel_shuffle_ratio = config.pixel_shuffle_ratio
|
|
self.inner_dim = int(
|
|
config.projector_input_dim // (self.pixel_shuffle_ratio**2)
|
|
)
|
|
self.output_dim = config.projector_output_dim
|
|
self.mlp = Llama4VisionMLP(
|
|
input_size=config.intermediate_size,
|
|
intermediate_size=config.projector_input_dim,
|
|
output_size=config.projector_output_dim,
|
|
bias=config.multi_modal_projector_bias,
|
|
output_activation=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
def forward(self, encoded_patches: torch.Tensor) -> torch.Tensor:
|
|
encoded_patches = pixel_shuffle(encoded_patches, self.pixel_shuffle_ratio)
|
|
return self.mlp(encoded_patches)
|
|
|
|
|
|
class Llama4VisionAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Llama4VisionConfig,
|
|
quant_config: QuantizationConfig | None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.tp_size = (
|
|
1 if use_data_parallel else get_tensor_model_parallel_world_size()
|
|
)
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = config.hidden_size // self.num_heads
|
|
assert self.num_heads % self.tp_size == 0
|
|
self.num_local_heads = self.num_heads // self.tp_size
|
|
self.q_size = self.num_local_heads * self.head_dim
|
|
self.kv_size = self.num_local_heads * self.head_dim
|
|
self.attention_dropout = config.attention_dropout
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.attn = MultiHeadAttention(
|
|
self.num_local_heads, self.head_dim, self.scaling
|
|
)
|
|
|
|
if use_data_parallel:
|
|
self.qkv_proj = ReplicatedLinear(
|
|
self.embed_dim,
|
|
self.q_size + 2 * self.kv_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
self.o_proj = ReplicatedLinear(
|
|
self.num_heads * self.head_dim,
|
|
self.embed_dim,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
else:
|
|
self.qkv_proj = QKVParallelLinear(
|
|
self.embed_dim,
|
|
self.head_dim,
|
|
self.num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
self.o_proj = RowParallelLinear(
|
|
self.num_heads * self.head_dim,
|
|
self.embed_dim,
|
|
bias=True,
|
|
input_is_parallel=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
head_size=self.head_dim,
|
|
rotary_dim=config.hidden_size // config.num_attention_heads // 2,
|
|
# number of image patches
|
|
max_position=(config.image_size // config.patch_size) ** 2,
|
|
base=config.rope_theta,
|
|
rope_scaling={"rope_type": "mllama4"},
|
|
is_neox_style=False,
|
|
dtype=torch.complex64, # important
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
input_shape = hidden_states.shape[:-1]
|
|
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
|
|
q = q.view(q.shape[0], q.shape[1], self.num_local_heads, self.head_dim)
|
|
k = k.view(k.shape[0], k.shape[1], self.num_local_heads, self.head_dim)
|
|
q, k = self.rotary_emb(q, k)
|
|
|
|
q = q.view(q.shape[0], q.shape[1], -1)
|
|
k = k.view(k.shape[0], k.shape[1], -1)
|
|
|
|
attn_output = self.attn(q, k, v)
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
attn_output, _ = self.o_proj(attn_output)
|
|
|
|
return attn_output
|
|
|
|
|
|
class Llama4VisionEncoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Llama4VisionConfig,
|
|
quant_config: QuantizationConfig | None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.intermediate_size = config.intermediate_size
|
|
|
|
self.self_attn = Llama4VisionAttention(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
self.mlp = Llama4VisionMLP(
|
|
input_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
output_size=config.hidden_size,
|
|
bias=True,
|
|
output_activation=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
self.input_layernorm = nn.LayerNorm(config.hidden_size)
|
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_state: torch.Tensor,
|
|
):
|
|
# Self Attention
|
|
residual = hidden_state
|
|
hidden_state = self.input_layernorm(hidden_state)
|
|
hidden_state = self.self_attn(hidden_state)
|
|
hidden_state = residual + hidden_state
|
|
|
|
# Feed forward
|
|
residual = hidden_state
|
|
hidden_state = self.post_attention_layernorm(hidden_state)
|
|
hidden_state = self.mlp(hidden_state)
|
|
hidden_state = residual + hidden_state
|
|
|
|
outputs = (hidden_state,)
|
|
return outputs
|
|
|
|
|
|
class Llama4VisionEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Llama4VisionConfig,
|
|
quant_config: QuantizationConfig | None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
Llama4VisionEncoderLayer(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.layers.{layer_idx}",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
for layer_idx in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Args:
|
|
hidden_states: Input tensor of shape
|
|
(batch_size, sequence_length, hidden_size).
|
|
Hidden states from the model embeddings, representing
|
|
the input tokens.
|
|
associated vectors than the model's internal embedding
|
|
lookup matrix.
|
|
"""
|
|
|
|
for encoder_layer in self.layers:
|
|
layer_outputs = encoder_layer(hidden_states)
|
|
hidden_states = layer_outputs[0]
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Llama4UnfoldConvolution(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Llama4VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
kernel_size = config.patch_size
|
|
if isinstance(kernel_size, int):
|
|
kernel_size = (kernel_size, kernel_size)
|
|
self.unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=config.patch_size)
|
|
self.linear = ColumnParallelLinear(
|
|
input_size=config.num_channels * kernel_size[0] * kernel_size[1],
|
|
output_size=config.hidden_size,
|
|
bias=False,
|
|
gather_output=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.linear",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.unfold(hidden_states)
|
|
hidden_states = hidden_states.permute(0, 2, 1)
|
|
hidden_states, _ = self.linear(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Llama4VisionModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Llama4VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
self.hidden_size = config.hidden_size
|
|
self.num_channels = config.num_channels
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
|
|
self.scale = config.hidden_size**-0.5
|
|
|
|
self.patch_embedding = Llama4UnfoldConvolution(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.patch_embedding",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size))
|
|
self.positional_embedding_vlm = nn.Parameter(
|
|
self.scale * torch.randn(self.num_patches, self.hidden_size)
|
|
)
|
|
|
|
# layer norms
|
|
self.layernorm_pre = nn.LayerNorm(self.hidden_size, eps=1e-5)
|
|
self.layernorm_post = nn.LayerNorm(self.hidden_size, eps=1e-5)
|
|
|
|
# encoders
|
|
self.model = Llama4VisionEncoder(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.model",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
self.vision_adapter = Llama4VisionPixelShuffleMLP(
|
|
config,
|
|
quant_config,
|
|
prefix=f"{prefix}.vision_adapter",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
images_flattened: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# Patch embedding
|
|
hidden_state = self.patch_embedding(images_flattened)
|
|
num_tiles, num_patches, hidden_dim = hidden_state.shape
|
|
|
|
# Add cls token
|
|
class_embedding = self.class_embedding.expand(
|
|
hidden_state.shape[0], 1, hidden_state.shape[-1]
|
|
)
|
|
hidden_state = torch.cat([hidden_state, class_embedding], dim=1)
|
|
num_patches += 1
|
|
|
|
# Position embeddings
|
|
hidden_state = hidden_state.reshape(
|
|
num_tiles,
|
|
1,
|
|
num_patches,
|
|
hidden_dim,
|
|
)
|
|
positional_embedding = self.positional_embedding_vlm.to(
|
|
dtype=hidden_state.dtype, device=hidden_state.device
|
|
)
|
|
hidden_state = hidden_state + positional_embedding
|
|
hidden_state = self.layernorm_pre(hidden_state)
|
|
hidden_state = hidden_state.view(num_tiles, -1, hidden_dim)
|
|
|
|
# Apply encoder
|
|
hidden_state = self.model(hidden_state)
|
|
hidden_state = self.layernorm_post(hidden_state)
|
|
|
|
# Remove CLS token output
|
|
hidden_state = hidden_state[:, :-1, :]
|
|
|
|
# now, we use Llama4VisionPixelShuffle + mlp to project embeddings
|
|
hidden_state = self.vision_adapter(hidden_state)
|
|
|
|
return hidden_state
|
|
|
|
|
|
class Mllama4ProcessingInfo(BaseProcessingInfo):
|
|
def __init__(self, ctx: InputProcessingContext) -> None:
|
|
super().__init__(ctx)
|
|
|
|
def get_hf_config(self) -> Llama4Config:
|
|
return self.ctx.get_hf_config(Llama4Config)
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> Llama4Processor:
|
|
return self.ctx.get_hf_processor(
|
|
Llama4Processor, use_fast=kwargs.pop("use_fast", True), **kwargs
|
|
)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
# Although vLLM can support more images from an infra capability
|
|
# perspective, we do not recommend using >10 images in practice.
|
|
return {"image": None}
|
|
|
|
@staticmethod
|
|
def get_patch_per_chunk(vision_config: Llama4VisionConfig) -> int:
|
|
image_size = vision_config.image_size
|
|
patch_size = vision_config.patch_size
|
|
|
|
assert image_size % patch_size == 0, (
|
|
f"chunk size {image_size} should be multiple of "
|
|
)
|
|
f"patch_size {patch_size}"
|
|
|
|
ds_ratio = int(round(1.0 / (vision_config.pixel_shuffle_ratio**2)))
|
|
return (image_size // patch_size) ** 2 // ds_ratio
|
|
|
|
def get_max_num_tiles(self) -> int:
|
|
image_processor = self.get_hf_processor().image_processor
|
|
return image_processor.max_patches
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
vision_config = self.get_hf_config().vision_config
|
|
image_size = vision_config.image_size
|
|
# Result in the max possible feature size (h:w = 16:1)
|
|
return ImageSize(height=self.get_max_num_tiles() * image_size, width=image_size)
|
|
|
|
|
|
class Mllama4MultiModalProcessor(BaseMultiModalProcessor[Mllama4ProcessingInfo]):
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
tokenizer = self.info.get_tokenizer()
|
|
|
|
if mm_data is None:
|
|
return tokenizer(prompt, add_special_tokens=False) # exclude bos
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
processor = self.info.get_hf_processor(**mm_kwargs)
|
|
image_processor = processor.image_processor
|
|
vision_config = self.info.get_hf_config().vision_config
|
|
|
|
if processed_outputs.get("pixel_values") is not None:
|
|
assert "images" in mm_data, (
|
|
"images expected to be in mm_data when pixel_values is present"
|
|
)
|
|
|
|
images = mm_data["images"]
|
|
parsed_images = (
|
|
self._get_data_parser()
|
|
.parse_mm_data({"image": images})
|
|
.get_items("image", ImageProcessorItems)
|
|
)
|
|
|
|
tile_size = vision_config.image_size
|
|
possible_resolutions = find_supported_resolutions(
|
|
max_num_chunks=self.info.get_max_num_tiles(),
|
|
patch_size=SizeDict(height=tile_size, width=tile_size),
|
|
)
|
|
best_fit_sizes = [
|
|
get_best_fit(
|
|
(image.size[1], image.size[0]),
|
|
torch.tensor(possible_resolutions),
|
|
resize_to_max_canvas=image_processor.resize_to_max_canvas,
|
|
)
|
|
for image in parsed_images
|
|
]
|
|
# TODO tile height/width do not necessarily need to match
|
|
aspect_ratios = [
|
|
(image_size[0] // tile_size, image_size[1] // tile_size)
|
|
for image_size in best_fit_sizes
|
|
]
|
|
patches_per_image = [
|
|
1 if r_h * r_w == 1 else 1 + r_h * r_w for (r_h, r_w) in aspect_ratios
|
|
]
|
|
|
|
processed_outputs["aspect_ratios"] = torch.tensor(aspect_ratios)
|
|
processed_outputs["patches_per_image"] = torch.tensor(patches_per_image)
|
|
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
patches_per_image = hf_inputs.get("patches_per_image", torch.empty(0))
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.flat_from_sizes(
|
|
"image", patches_per_image
|
|
),
|
|
patches_per_image=MultiModalFieldConfig.batched("image"),
|
|
aspect_ratios=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> list[PromptUpdate]:
|
|
config = self.info.get_hf_config()
|
|
vision_config = config.vision_config
|
|
|
|
num_patches_per_chunk = self.info.get_patch_per_chunk(vision_config)
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
image_token = hf_processor.image_token
|
|
img_patch_token = hf_processor.img_patch_token
|
|
|
|
def get_replacement(item_idx: int):
|
|
out_item = out_mm_kwargs["image"][item_idx]
|
|
aspect_ratio = out_item["aspect_ratios"].data
|
|
|
|
repl = hf_processor._prompt_split_image(
|
|
aspect_ratio=aspect_ratio,
|
|
num_patches_per_chunk=num_patches_per_chunk,
|
|
)
|
|
|
|
return PromptUpdateDetails.select_text(repl, img_patch_token)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=image_token,
|
|
replacement=get_replacement,
|
|
)
|
|
]
|
|
|
|
|
|
class Mllama4DummyInputsBuilder(BaseDummyInputsBuilder[Mllama4ProcessingInfo]):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.fake_image_token
|
|
|
|
return image_token * num_images
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
(target_width, target_height) = self.info.get_image_size_with_most_features()
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Mllama4MultiModalProcessor,
|
|
info=Mllama4ProcessingInfo,
|
|
dummy_inputs=Mllama4DummyInputsBuilder,
|
|
)
|
|
class Llama4ForConditionalGeneration(
|
|
nn.Module,
|
|
SupportsMultiModal,
|
|
SupportsPP,
|
|
MixtureOfExperts,
|
|
SupportsEagle3,
|
|
SupportsLoRA,
|
|
):
|
|
merge_by_field_config = True
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
supports_encoder_tp_data = True
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<|image|>"
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
|
|
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.multimodal_config = multimodal_config
|
|
if multimodal_config.get_limit_per_prompt("image"):
|
|
self.vision_model = Llama4VisionModel(
|
|
config.vision_config,
|
|
None,
|
|
prefix=maybe_prefix(prefix, "vision_model"),
|
|
use_data_parallel=self.use_data_parallel,
|
|
)
|
|
self.multi_modal_projector = Llama4MultiModalProjector(
|
|
self.config, None, prefix=maybe_prefix(prefix, "multi_modal_projector")
|
|
)
|
|
else:
|
|
self.vision_model = None
|
|
self.multi_modal_projector = None
|
|
self.language_model = initialize_model(
|
|
vllm_config=vllm_config.with_hf_config(
|
|
config.text_config, ["LlamaForCausalLM"]
|
|
),
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
model_class=Llama4ForCausalLM,
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
# Set MoE hyperparameters
|
|
self.num_expert_groups = 1
|
|
self.num_logical_experts = self.language_model.num_logical_experts
|
|
self.num_physical_experts = self.language_model.num_physical_experts
|
|
self.num_local_physical_experts = self.language_model.num_local_physical_experts
|
|
self.num_routed_experts = self.language_model.num_routed_experts
|
|
self.num_shared_experts = self.language_model.num_shared_experts
|
|
self.num_redundant_experts = self.language_model.num_redundant_experts
|
|
self.moe_layers = self.language_model.moe_layers
|
|
self.num_moe_layers = len(self.moe_layers)
|
|
|
|
def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
|
|
"""Set which layers should output auxiliary hidden states for EAGLE3."""
|
|
# Delegate to underlying language model (Llama4ForCausalLM)
|
|
assert hasattr(self.language_model, "set_aux_hidden_state_layers")
|
|
self.language_model.set_aux_hidden_state_layers(layers)
|
|
|
|
def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
|
|
"""Get the layer indices for auxiliary hidden state outputs.
|
|
|
|
Note: The GPU model runner will override this with layers from
|
|
the speculative config if available, providing dynamic configuration.
|
|
"""
|
|
# Delegate to underlying language model (Llama4ForCausalLM)
|
|
assert hasattr(self.language_model, "get_eagle3_aux_hidden_state_layers")
|
|
return self.language_model.get_eagle3_aux_hidden_state_layers()
|
|
|
|
def set_eplb_state(
|
|
self,
|
|
expert_load_view: torch.Tensor,
|
|
logical_to_physical_map: torch.Tensor,
|
|
logical_replica_count: torch.Tensor,
|
|
):
|
|
self.language_model.set_eplb_state(
|
|
expert_load_view, logical_to_physical_map, logical_replica_count
|
|
)
|
|
self.expert_weights = self.language_model.expert_weights
|
|
|
|
def update_physical_experts_metadata(
|
|
self, num_physical_experts: int, num_local_physical_experts: int
|
|
):
|
|
self.language_model.update_physical_experts_metadata(
|
|
num_physical_experts, num_local_physical_experts
|
|
)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> Llama4ImagePatchInputs | None:
|
|
# num_images, 1, num_chunks, channel, image_size, image_size
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
if pixel_values is None:
|
|
return None
|
|
|
|
patches_per_image = kwargs.pop("patches_per_image")
|
|
aspect_ratios = kwargs.pop("aspect_ratios")
|
|
|
|
return Llama4ImagePatchInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
patches_per_image=patches_per_image,
|
|
aspect_ratios=aspect_ratios,
|
|
)
|
|
|
|
def _process_image_input(
|
|
self, image_input: Llama4ImagePatchInputs
|
|
) -> MultiModalEmbeddings:
|
|
assert self.vision_model and self.multi_modal_projector
|
|
pixel_values = image_input["pixel_values"]
|
|
patches_per_image = image_input["patches_per_image"].tolist()
|
|
|
|
# shard image input
|
|
if self.use_data_parallel:
|
|
vision_embeddings_flat = run_dp_sharded_vision_model(
|
|
pixel_values, self.vision_model
|
|
)
|
|
else:
|
|
vision_embeddings_flat = self.vision_model(pixel_values)
|
|
|
|
vision_embeddings_flat = self.multi_modal_projector(vision_embeddings_flat)
|
|
|
|
return [
|
|
img.flatten(0, 1)
|
|
for img in vision_embeddings_flat.split(patches_per_image, dim=0)
|
|
]
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def embed_multimodal(self, **kwargs) -> MultiModalEmbeddings:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
|
|
return self._process_image_input(image_input)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
return self.language_model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def separate_weights(
|
|
self,
|
|
weights: Iterable[tuple[str, torch.Tensor]],
|
|
prefix: str,
|
|
) -> tuple[Iterable[tuple[str, torch.Tensor]], Iterable[tuple[str, torch.Tensor]]]:
|
|
weights1, weights2 = tee(weights, 2)
|
|
|
|
def get_prefix_weights() -> Iterable[tuple[str, torch.Tensor]]:
|
|
for name, data in weights1:
|
|
if name.startswith(prefix):
|
|
yield (name, data)
|
|
|
|
def get_other_weights() -> Iterable[tuple[str, torch.Tensor]]:
|
|
for name, data in weights2:
|
|
if not name.startswith(prefix):
|
|
yield (name, data)
|
|
|
|
return get_prefix_weights(), get_other_weights()
|
|
|
|
def _consolidate_qkv_weights(
|
|
self, weights: Iterable[tuple[str, torch.Tensor]]
|
|
) -> Iterable[tuple[str, torch.Tensor]]:
|
|
qkv_idx_mappings = {
|
|
".self_attn.q_proj": 0,
|
|
".self_attn.k_proj": 1,
|
|
".self_attn.v_proj": 2,
|
|
}
|
|
qkv_weights = {}
|
|
for name, loaded_weight in weights:
|
|
for weight_name, idx in qkv_idx_mappings.items():
|
|
if weight_name not in name:
|
|
continue
|
|
new_name = name.replace(weight_name, ".self_attn.qkv_proj")
|
|
if new_name not in qkv_weights:
|
|
qkv_weights[new_name] = [None] * 3
|
|
qkv_weights[new_name][idx] = loaded_weight
|
|
break
|
|
else:
|
|
yield name, loaded_weight
|
|
for key, weight in qkv_weights.items():
|
|
qkv_weight = torch.cat(weight, dim=0)
|
|
yield key, qkv_weight
|
|
|
|
def _rename_weight_for_modelopt_checkpoint(self, name: str) -> str:
|
|
"""Rename weights from ModelOpt llama4 fp8 checkpoints to vLLM
|
|
format."""
|
|
if name.startswith("model.") or name.startswith("language_model.model."):
|
|
renamed = (
|
|
name.replace("model.", "language_model.model.", 1)
|
|
if name.startswith("model.")
|
|
else name
|
|
)
|
|
# Handle expert scale parameters with flat naming
|
|
if "feed_forward.experts." in name and (
|
|
"_input_scale" in name or "_weight_scale" in name
|
|
):
|
|
# Map checkpoint naming to vLLM's expected naming
|
|
if "down_proj_input_scale" in renamed:
|
|
return renamed.replace("down_proj_input_scale", "w2_input_scale")
|
|
elif "down_proj_weight_scale" in renamed:
|
|
return renamed.replace("down_proj_weight_scale", "w2_weight_scale")
|
|
elif "gate_up_proj_input_scale" in renamed:
|
|
return renamed.replace(
|
|
"gate_up_proj_input_scale", "w13_input_scale"
|
|
)
|
|
elif "gate_up_proj_weight_scale" in renamed:
|
|
return renamed.replace(
|
|
"gate_up_proj_weight_scale", "w13_weight_scale"
|
|
)
|
|
return renamed
|
|
|
|
# Handle attention scale parameters
|
|
elif "self_attn." in name and (".k_scale" in name or ".v_scale" in name):
|
|
if ".k_proj.k_scale" in renamed:
|
|
return renamed.replace(".k_proj.k_scale", ".attn.k_scale")
|
|
elif ".v_proj.v_scale" in renamed:
|
|
return renamed.replace(".v_proj.v_scale", ".attn.v_scale")
|
|
return renamed
|
|
|
|
# Standard model.* to language_model.model.* renaming
|
|
return renamed
|
|
|
|
elif name.startswith("lm_head.weight"):
|
|
return name.replace("lm_head.weight", "language_model.lm_head.weight")
|
|
|
|
return name
|
|
|
|
def _separate_and_rename_weights(
|
|
self, weights: Iterable[tuple[str, torch.Tensor]]
|
|
) -> tuple[list[tuple[str, torch.Tensor]], list[tuple[str, torch.Tensor]]]:
|
|
"""Rename weights and separate them into language_model and other
|
|
weights."""
|
|
language_model_weights = []
|
|
other_weights = []
|
|
|
|
for name, weight in weights:
|
|
renamed = self._rename_weight_for_modelopt_checkpoint(name)
|
|
|
|
if renamed.startswith("language_model."):
|
|
language_model_weights.append((renamed, weight))
|
|
else:
|
|
other_weights.append((renamed, weight))
|
|
|
|
return language_model_weights, other_weights
|
|
|
|
def _handle_expert_scale_broadcasting(
|
|
self, weights: list[tuple[str, torch.Tensor]], params_dict: dict
|
|
) -> tuple[list[tuple[str, torch.Tensor]], set[str]]:
|
|
"""Handle expert scale parameters that need broadcasting.
|
|
|
|
ModelOpt checkpoints use a single value tensor scalar for BMM style
|
|
experts, vLLM expects the scale to be broadcasted across all experts.
|
|
"""
|
|
regular_weights = []
|
|
expert_scale_weights = []
|
|
updated_params = set()
|
|
|
|
for name, weight in weights:
|
|
# Check if this is an expert scale parameter that needs broadcasting
|
|
if (
|
|
"feed_forward.experts." in name
|
|
and "scale" in name
|
|
and ".shared_expert" not in name
|
|
):
|
|
if name in params_dict:
|
|
param = params_dict[name]
|
|
if (
|
|
hasattr(param, "data")
|
|
and param.data.numel() > 1
|
|
and weight.numel() == 1
|
|
):
|
|
# Broadcast single value to all experts
|
|
param.data.fill_(weight.item())
|
|
updated_params.add(name)
|
|
continue
|
|
|
|
expert_scale_weights.append((name, weight))
|
|
else:
|
|
regular_weights.append((name, weight))
|
|
|
|
return regular_weights, expert_scale_weights, updated_params
|
|
|
|
def _load_other_weights(
|
|
self,
|
|
other_weights: Iterable[tuple[str, torch.Tensor]],
|
|
params_dict: dict,
|
|
stacked_params_mapping: list,
|
|
) -> set[str]:
|
|
"""Load non-language-model weights with stacking support."""
|
|
updated_params = set()
|
|
|
|
if self.use_data_parallel:
|
|
other_weights = self._consolidate_qkv_weights(other_weights)
|
|
|
|
for name, loaded_weight in other_weights:
|
|
# Try stacked parameter mapping first
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name or self.use_data_parallel:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
updated_params.add(name)
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Use regular weight loading
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
updated_params.add(name)
|
|
|
|
return updated_params
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
return FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.text_config.num_local_experts,
|
|
num_redundant_experts=self.num_redundant_experts,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".self_attn.qkv_proj", ".self_attn.q_proj", "q"),
|
|
(".self_attn.qkv_proj", ".self_attn.k_proj", "k"),
|
|
(".self_attn.qkv_proj", ".self_attn.v_proj", "v"),
|
|
# Shared expert gate_up_proj stacking
|
|
(".shared_expert.gate_up_proj", ".shared_expert.gate_proj", 0),
|
|
(".shared_expert.gate_up_proj", ".shared_expert.up_proj", 1),
|
|
# Feed forward gate_up_proj stacking (for non-MoE layers if any)
|
|
(".feed_forward.gate_up_proj", ".feed_forward.gate_proj", 0),
|
|
(".feed_forward.gate_up_proj", ".feed_forward.up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
updated_params: set[str] = set()
|
|
|
|
# Separate and rename weights
|
|
language_model_weights, other_weights = self._separate_and_rename_weights(
|
|
weights
|
|
)
|
|
|
|
# Skip loading vision model and projector if they're not initialized.
|
|
if self.vision_model is None and self.multi_modal_projector is None:
|
|
other_weights = []
|
|
|
|
# Handle expert scale parameters
|
|
regular_weights, expert_scale_weights, updated_params_from_experts = (
|
|
self._handle_expert_scale_broadcasting(language_model_weights, params_dict)
|
|
)
|
|
updated_params.update(updated_params_from_experts)
|
|
|
|
loader = AutoWeightsLoader(self)
|
|
loaded_language_model_params = loader.load_weights(regular_weights)
|
|
assert loaded_language_model_params is not None
|
|
updated_params.update(loaded_language_model_params)
|
|
|
|
if expert_scale_weights:
|
|
loaded_expert_scale_params = loader.load_weights(expert_scale_weights)
|
|
if loaded_expert_scale_params:
|
|
updated_params.update(loaded_expert_scale_params)
|
|
|
|
updated_params.update(
|
|
self._load_other_weights(other_weights, params_dict, stacked_params_mapping)
|
|
)
|
|
|
|
return updated_params
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="language_model",
|
|
connector="multi_modal_projector.",
|
|
tower_model="vision_model.",
|
|
)
|