mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-16 20:16:15 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
129 lines
3.8 KiB
Python
129 lines
3.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List, Type
|
|
|
|
import pytest
|
|
import torch.nn.functional as F
|
|
|
|
from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner
|
|
from ....utils import large_gpu_test
|
|
from ..utils import check_embeddings_close
|
|
|
|
HF_TEXT_PROMPTS = [
|
|
# T -> X
|
|
"Find me an everyday image that matches the given caption: The label of the object is stop sign", # noqa: E501
|
|
# T -> X
|
|
"Retrieve an image of this caption: cherry blossom",
|
|
]
|
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
# T + I -> X
|
|
"stop_sign":
|
|
"<|image_1|> Select the portion of the image that isolates the object of the given label: The label of the object is stop sign", # noqa: E501
|
|
# I -> X
|
|
"cherry_blossom":
|
|
"<|image_1|> Represent the given image for classification", # noqa: E501
|
|
})
|
|
|
|
MODELS = ["TIGER-Lab/VLM2Vec-Full"]
|
|
|
|
|
|
def _run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
input_texts: List[str],
|
|
input_images: PromptImageInput,
|
|
model: str,
|
|
*,
|
|
dtype: str,
|
|
) -> None:
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
|
with vllm_runner(model, task="embed", dtype=dtype,
|
|
enforce_eager=True) as vllm_model:
|
|
vllm_outputs = vllm_model.encode(input_texts, images=input_images)
|
|
|
|
# use eager mode for hf runner, since phi3_v didn't work with flash_attn
|
|
hf_model_kwargs = {"_attn_implementation": "eager"}
|
|
with hf_runner(model, dtype=dtype,
|
|
model_kwargs=hf_model_kwargs) as hf_model:
|
|
all_inputs = hf_model.get_inputs(input_texts, images=input_images)
|
|
|
|
all_outputs = []
|
|
for inputs in all_inputs:
|
|
# Based on: https://github.com/TIGER-AI-Lab/VLM2Vec/blob/db3b951bccabba220c1f53ab46a734e50dd2fc08/src/model.py
|
|
outputs = hf_model.model(
|
|
**hf_model.wrap_device(inputs,
|
|
device=hf_model.model.device.type),
|
|
return_dict=True,
|
|
output_hidden_states=True,
|
|
)
|
|
last_hidden_state = outputs.hidden_states[-1][0]
|
|
reps = last_hidden_state[inputs.attention_mask[0].sum() - 1]
|
|
pooled_output = F.normalize(reps, p=2, dim=-1)
|
|
|
|
all_outputs.append(pooled_output.tolist())
|
|
|
|
hf_outputs = all_outputs
|
|
|
|
check_embeddings_close(
|
|
embeddings_0_lst=hf_outputs,
|
|
embeddings_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
def test_models_text(
|
|
hf_runner,
|
|
vllm_runner,
|
|
image_assets,
|
|
model: str,
|
|
dtype: str,
|
|
) -> None:
|
|
input_texts_images = [(text, None) for text in HF_TEXT_PROMPTS]
|
|
input_texts = [text for text, _ in input_texts_images]
|
|
input_images = [image for _, image in input_texts_images]
|
|
|
|
_run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
input_texts,
|
|
input_images, # type: ignore
|
|
model,
|
|
dtype=dtype,
|
|
)
|
|
|
|
|
|
@large_gpu_test(min_gb=48)
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
def test_models_image(
|
|
hf_runner,
|
|
vllm_runner,
|
|
image_assets,
|
|
model: str,
|
|
dtype: str,
|
|
) -> None:
|
|
input_texts_images = [
|
|
(text, asset.pil_image)
|
|
for text, asset in zip(HF_IMAGE_PROMPTS, image_assets)
|
|
]
|
|
input_texts = [text for text, _ in input_texts_images]
|
|
input_images = [image for _, image in input_texts_images]
|
|
|
|
_run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
input_texts,
|
|
input_images,
|
|
model,
|
|
dtype=dtype,
|
|
)
|