mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-11 19:55:01 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
118 lines
5.0 KiB
Python
118 lines
5.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import random
|
|
from typing import List
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.sequence import ExecuteModelRequest
|
|
from vllm.spec_decode.batch_expansion import BatchExpansionTop1Scorer
|
|
from vllm.spec_decode.interfaces import SpeculativeProposals, SpeculativeScores
|
|
from vllm.spec_decode.mqa_scorer import MQAScorer
|
|
from vllm.worker.worker import Worker
|
|
|
|
from .utils import create_batch, create_worker
|
|
|
|
|
|
def create_proposal(propose_lens: List[int], vocab_size: int,
|
|
device: str) -> SpeculativeProposals:
|
|
batch_size = len(propose_lens)
|
|
max_propose_len = max(propose_lens)
|
|
proposal_probs = torch.rand((batch_size, max_propose_len, vocab_size),
|
|
device=device)
|
|
|
|
proposal_token_ids = torch.full((batch_size, max_propose_len),
|
|
fill_value=-1,
|
|
device=device)
|
|
for i in range(batch_size):
|
|
proposal_token_ids[i][:propose_lens[i]] = torch.argmax(
|
|
proposal_probs[i][:propose_lens[i]], dim=-1)
|
|
|
|
propose_lens = torch.tensor(propose_lens, device=device)
|
|
return SpeculativeProposals(proposal_token_ids, proposal_probs,
|
|
propose_lens)
|
|
|
|
|
|
def assert_score_equal(score1: SpeculativeScores,
|
|
score2: SpeculativeScores) -> None:
|
|
assert torch.allclose(score1.probs, score2.probs)
|
|
assert torch.allclose(score1.logprobs, score2.logprobs)
|
|
assert torch.equal(
|
|
score1.token_ids,
|
|
score2.token_ids), f"{score1.token_ids}, {score2.token_ids}"
|
|
|
|
|
|
@pytest.mark.parametrize('model_name', ['facebook/opt-125m'])
|
|
@pytest.mark.parametrize('batch_size', [1, 2, 4, 8, 16])
|
|
@pytest.mark.parametrize('max_propose_len', [1, 3, 5])
|
|
@pytest.mark.parametrize('mixed_propose_len', [True])
|
|
@pytest.mark.parametrize('device', ['cuda'])
|
|
@pytest.mark.parametrize('prefill_chunking', [False, True])
|
|
def test_scorer(model_name: str, batch_size: int, max_propose_len: int,
|
|
mixed_propose_len: bool, device: str,
|
|
prefill_chunking: bool) -> None:
|
|
"""
|
|
Compare the batch expansion scorer and mqa scorer return the same score.
|
|
We test for both queries with the same propose length and different
|
|
propose length, as well as mixed prefill-decode batches.
|
|
"""
|
|
seed = 0
|
|
block_size = 32
|
|
num_gpu_blocks = 2048 // block_size
|
|
scorer_worker = create_worker(Worker, model_name, block_size,
|
|
num_gpu_blocks, seed)
|
|
scorer_worker.model_runner.disable_logprobs = True # accessed by mqa_scorer
|
|
scorer_worker.model_runner.model.sampler.include_gpu_probs_tensor = True
|
|
scorer_worker.model_runner.model.sampler.\
|
|
should_modify_greedy_probs_inplace = True
|
|
|
|
vocab_size = scorer_worker.vocab_size
|
|
|
|
if not mixed_propose_len:
|
|
propose_lens = [max_propose_len] * batch_size
|
|
else:
|
|
# There must be at least 1 decode request, otherwise
|
|
# we have nothing to score (`_run_no_spec`).
|
|
non_zero_cnt = random.randint(1, batch_size)
|
|
propose_lens = [max_propose_len
|
|
] * non_zero_cnt + [0] * (batch_size - non_zero_cnt)
|
|
random.shuffle(propose_lens)
|
|
|
|
seq_group_metadatalist, _, _ = create_batch(batch_size,
|
|
max_propose_len,
|
|
block_size=block_size,
|
|
num_gpu_blocks=num_gpu_blocks)
|
|
|
|
if mixed_propose_len and prefill_chunking and (n_prefills :=
|
|
batch_size - non_zero_cnt):
|
|
prefill, _, _ = create_batch(n_prefills,
|
|
None,
|
|
prefill_chunk_size=4,
|
|
block_size=block_size,
|
|
num_gpu_blocks=num_gpu_blocks,
|
|
seq_ids=list(
|
|
range(batch_size,
|
|
batch_size + n_prefills)))
|
|
# re-order to guarantee prefill|decode order
|
|
target_group_metadatalist = [
|
|
seq_group_metadatalist[i] for i, p in enumerate(propose_lens)
|
|
if p > 0
|
|
]
|
|
seq_group_metadatalist = prefill + target_group_metadatalist
|
|
propose_lens = [0] * n_prefills + [p for p in propose_lens if p > 0]
|
|
|
|
proposals = create_proposal(propose_lens, vocab_size, device)
|
|
requests = ExecuteModelRequest(seq_group_metadatalist,
|
|
num_lookahead_slots=max_propose_len)
|
|
|
|
batch_expansion_scorer = BatchExpansionTop1Scorer(scorer_worker, device,
|
|
vocab_size)
|
|
batch_expansion_score = batch_expansion_scorer.score_proposals(
|
|
requests, proposals)
|
|
|
|
mqa_scorer = MQAScorer(scorer_worker, device, vocab_size)
|
|
mqa_score = mqa_scorer.score_proposals(requests, proposals)
|
|
|
|
assert_score_equal(batch_expansion_score, mqa_score)
|