mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 10:45:01 +08:00
451 lines
16 KiB
Python
451 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Adapted from https://github.com/huggingface/transformers/tree/main/src/transformers/models/aya_vision
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Literal
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import BatchFeature, GotOcr2ImageProcessor
|
|
from transformers.activations import ACT2FN
|
|
from transformers.image_processing_utils import get_size_dict
|
|
from transformers.models.aya_vision import AyaVisionConfig
|
|
from transformers.models.aya_vision.processing_aya_vision import AyaVisionProcessor
|
|
from transformers.models.got_ocr2.image_processing_got_ocr2 import (
|
|
get_optimal_tiled_canvas,
|
|
)
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargsItems
|
|
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
MultiModalFieldConfig,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
PromptUpdateDetails,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .siglip import SiglipVisionModel
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class AyaVisionImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- np: The total number of patches over each image over each prompt in
|
|
the batch
|
|
- c: Number of channels
|
|
- h: Height of each image patch
|
|
- w: Width of each image patch
|
|
- bn: Batch size * number of images
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
|
|
pixel_values: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("np", 3, "h", "w"),
|
|
]
|
|
|
|
num_patches: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("bn"),
|
|
]
|
|
|
|
|
|
class AyaVisionMultiModalProjector(nn.Module):
|
|
def __init__(self, config: AyaVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.downsample_factor = config.downsample_factor
|
|
self.alignment_intermediate_size = getattr(
|
|
config, "alignment_intermediate_size", config.text_config.hidden_size
|
|
)
|
|
self.layernorm = nn.LayerNorm(
|
|
config.vision_config.hidden_size * (config.downsample_factor**2),
|
|
eps=config.adapter_layer_norm_eps,
|
|
)
|
|
|
|
self.linear_1 = nn.Linear(
|
|
config.vision_config.hidden_size * (config.downsample_factor**2),
|
|
self.alignment_intermediate_size,
|
|
bias=True,
|
|
)
|
|
|
|
self.act = ACT2FN["silu"] # SwiGLU uses SiLU activation
|
|
# For SwiGLU, project down to half size since we split intermediate dim
|
|
self.linear_2 = nn.Linear(
|
|
self.alignment_intermediate_size // 2,
|
|
config.text_config.hidden_size,
|
|
bias=True,
|
|
)
|
|
|
|
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
|
|
image_features = self.pixel_shuffle(image_features)
|
|
image_features = self.layernorm(image_features)
|
|
hidden_states = self.linear_1(image_features)
|
|
|
|
# Split along last dimension and apply SwiGLU
|
|
x, gate = hidden_states.chunk(2, dim=-1)
|
|
hidden_states = self.act(gate) * x
|
|
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
def pixel_shuffle(self, image_features: torch.Tensor) -> torch.Tensor: # B, S, D
|
|
batch_size, seq_length, _ = image_features.shape
|
|
height = width = int(seq_length**0.5)
|
|
image_features = image_features.reshape(
|
|
image_features.shape[0], width, height, -1
|
|
)
|
|
channels = image_features.shape[-1]
|
|
image_features = image_features.reshape(
|
|
batch_size,
|
|
width,
|
|
int(height / self.downsample_factor),
|
|
int(channels * self.downsample_factor),
|
|
)
|
|
image_features = image_features.permute(0, 2, 1, 3)
|
|
image_features = image_features.reshape(
|
|
batch_size,
|
|
int(height / self.downsample_factor),
|
|
int(width / self.downsample_factor),
|
|
-1,
|
|
)
|
|
image_features = image_features.permute(0, 2, 1, 3)
|
|
return image_features
|
|
|
|
|
|
class AyaVisionProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self) -> AyaVisionConfig:
|
|
return self.ctx.get_hf_config(AyaVisionConfig)
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> AyaVisionProcessor:
|
|
return self.ctx.get_hf_processor(AyaVisionProcessor, **kwargs)
|
|
|
|
def get_image_processor(self, **kwargs: object) -> GotOcr2ImageProcessor:
|
|
return self.get_hf_processor(**kwargs).image_processor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"image": None}
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
image_processor = self.get_image_processor()
|
|
height = image_processor.size["height"]
|
|
width = image_processor.size["width"]
|
|
max_patches = image_processor.max_patches
|
|
return ImageSize(height=height * max_patches, width=width * max_patches)
|
|
|
|
def get_num_patches(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
size: dict,
|
|
min_patches: int,
|
|
max_patches: int,
|
|
) -> int:
|
|
"""
|
|
Calculate the number of patches needed for a given image based on size
|
|
constraints. This method replicates and adjusts the logic from:
|
|
transformers/models/got_ocr2/image_processing_got_ocr2
|
|
"""
|
|
size = get_size_dict(size, default_to_square=False)
|
|
num_columns, num_rows = get_optimal_tiled_canvas(
|
|
(image_height, image_width),
|
|
(size["height"], size["width"]),
|
|
min_patches,
|
|
max_patches,
|
|
)
|
|
num_blocks = num_columns * num_rows
|
|
return num_blocks if num_blocks == 1 else num_blocks + 1
|
|
|
|
|
|
class AyaVisionDummyInputsBuilder(BaseDummyInputsBuilder[AyaVisionProcessingInfo]):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.image_token
|
|
|
|
return image_token * num_images
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
image_size = self.info.get_image_size_with_most_features()
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=image_size.width,
|
|
height=image_size.height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
class AyaVisionMultiModalProcessor(BaseMultiModalProcessor[AyaVisionProcessingInfo]):
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt,
|
|
mm_data,
|
|
mm_kwargs,
|
|
tok_kwargs,
|
|
)
|
|
hf_processor = self.info.get_hf_processor(**mm_kwargs)
|
|
image_processor = hf_processor.image_processor
|
|
|
|
# HF processor pops the `num_patches` kwarg, which is needed by vLLM
|
|
if (images := mm_data.get("images")) is not None:
|
|
parsed_images = (
|
|
self._get_data_parser()
|
|
.parse_mm_data({"image": images})
|
|
.get_items("image", ImageProcessorItems)
|
|
)
|
|
image_sizes = [
|
|
parsed_images.get_image_size(i) for i in range(len(parsed_images))
|
|
]
|
|
|
|
num_patches = [
|
|
self.info.get_num_patches(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
size=image_processor.size,
|
|
min_patches=image_processor.min_patches,
|
|
max_patches=image_processor.max_patches,
|
|
)
|
|
for image_size in image_sizes
|
|
]
|
|
processed_outputs["num_patches"] = torch.tensor(num_patches)
|
|
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
num_patches = hf_inputs.get("num_patches", torch.empty(0))
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.flat_from_sizes("image", num_patches),
|
|
num_patches=MultiModalFieldConfig.batched("image"),
|
|
image_embeds=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
image_token = hf_processor.image_token
|
|
img_patch_token = hf_processor.img_patch_token
|
|
image_processor = hf_processor.image_processor
|
|
|
|
def get_replacement(item_idx: int):
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
image_size: ImageSize = images.get_image_size(item_idx)
|
|
num_patches = self.info.get_num_patches(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
size=image_processor.size,
|
|
min_patches=image_processor.min_patches,
|
|
max_patches=image_processor.max_patches,
|
|
)
|
|
repl = hf_processor._prompt_split_image(num_patches=num_patches)
|
|
|
|
return PromptUpdateDetails.select_text(repl, img_patch_token)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=image_token,
|
|
replacement=get_replacement,
|
|
)
|
|
]
|
|
|
|
|
|
def _get_num_hidden_layers(hf_config: AyaVisionConfig) -> int:
|
|
feature_layers = hf_config.vision_feature_layer
|
|
num_hidden_layers = hf_config.vision_config.num_hidden_layers
|
|
# If we have one feature layer, initialize up to that layer
|
|
if isinstance(feature_layers, int):
|
|
return _get_layer_index(feature_layers, num_hidden_layers)
|
|
# If we have multiple feature layers, initialize up to the deepest m
|
|
elif isinstance(feature_layers, (list, tuple)):
|
|
return max(_get_layer_index(idx, num_hidden_layers) for idx in feature_layers)
|
|
raise TypeError(
|
|
f"vision_layer_feature type: {type(feature_layers)} is not supported"
|
|
)
|
|
|
|
|
|
def _get_layer_index(feature_layer_index: int, num_hidden_layers: int) -> int:
|
|
if feature_layer_index < 0:
|
|
return num_hidden_layers + feature_layer_index + 1
|
|
return feature_layer_index
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
AyaVisionMultiModalProcessor,
|
|
info=AyaVisionProcessingInfo,
|
|
dummy_inputs=AyaVisionDummyInputsBuilder,
|
|
)
|
|
class AyaVisionForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
|
merge_by_field_config = True
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
# mapping for new names in checkpoint saved after transformers v4.52
|
|
"model.language_model.": "language_model.model.",
|
|
"model.vision_tower.": "vision_tower.",
|
|
"model.multi_modal_projector.": "multi_modal_projector.",
|
|
"lm_head.": "language_model.lm_head.",
|
|
}
|
|
)
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<image>"
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config: AyaVisionConfig = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
num_hidden_layers = _get_num_hidden_layers(config)
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
self.vision_tower = SiglipVisionModel(
|
|
config.vision_config,
|
|
quant_config,
|
|
num_hidden_layers_override=num_hidden_layers,
|
|
prefix=maybe_prefix(prefix, "vision_model"),
|
|
)
|
|
self.vocab_size = config.text_config.vocab_size
|
|
self.multi_modal_projector = AyaVisionMultiModalProjector(config)
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "model"),
|
|
# Cohere2ForCausalLM and CohereForCausalLM are the same on vllm
|
|
architectures=["Cohere2ForCausalLM"],
|
|
)
|
|
|
|
@property
|
|
def dtype(self):
|
|
return next(self.parameters()).dtype
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
def _image_pixels_to_features(
|
|
self,
|
|
vision_tower: SiglipVisionModel,
|
|
pixel_values: torch.Tensor,
|
|
) -> torch.Tensor | tuple[torch.Tensor, ...]:
|
|
return vision_tower(
|
|
pixel_values.to(dtype=vision_tower.dtype),
|
|
feature_select_strategy=self.config.vision_feature_select_strategy,
|
|
)
|
|
|
|
def _process_image_input(
|
|
self, image_input: AyaVisionImagePixelInputs, **kwargs
|
|
) -> list[torch.Tensor]:
|
|
assert self.vision_tower is not None
|
|
pixel_values = image_input["pixel_values"]
|
|
num_patches = image_input["num_patches"]
|
|
image_features = self._image_pixels_to_features(
|
|
self.vision_tower, pixel_values=pixel_values
|
|
)
|
|
image_embeds = self.multi_modal_projector(image_features)
|
|
return [e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())]
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> AyaVisionImagePixelInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
num_patches = kwargs.pop("num_patches", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
assert image_embeds is None, "Aya Vision does not support image_embeds."
|
|
|
|
if pixel_values is None:
|
|
return None
|
|
|
|
return AyaVisionImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
num_patches=num_patches,
|
|
resolve_bindings={
|
|
"h": self.config.vision_config.image_size,
|
|
"w": self.config.vision_config.image_size,
|
|
},
|
|
)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
|
|
return self._process_image_input(image_input, **kwargs)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|