vllm/vllm/model_executor/models/aya_vision.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

451 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from https://github.com/huggingface/transformers/tree/main/src/transformers/models/aya_vision
from collections.abc import Iterable, Mapping, Sequence
from typing import Annotated, Literal
import torch
from torch import nn
from transformers import BatchFeature, GotOcr2ImageProcessor
from transformers.activations import ACT2FN
from transformers.image_processing_utils import get_size_dict
from transformers.models.aya_vision import AyaVisionConfig
from transformers.models.aya_vision.processing_aya_vision import AyaVisionProcessor
from transformers.models.got_ocr2.image_processing_got_ocr2 import (
get_optimal_tiled_canvas,
)
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargsItems
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
MultiModalFieldConfig,
PromptReplacement,
PromptUpdate,
PromptUpdateDetails,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from .siglip import SiglipVisionModel
from .utils import (
AutoWeightsLoader,
WeightsMapper,
init_vllm_registered_model,
maybe_prefix,
)
class AyaVisionImagePixelInputs(TensorSchema):
"""
Dimensions:
- np: The total number of patches over each image over each prompt in
the batch
- c: Number of channels
- h: Height of each image patch
- w: Width of each image patch
- bn: Batch size * number of images
"""
type: Literal["pixel_values"]
pixel_values: Annotated[
torch.Tensor,
TensorShape("np", 3, "h", "w"),
]
num_patches: Annotated[
torch.Tensor,
TensorShape("bn"),
]
class AyaVisionMultiModalProjector(nn.Module):
def __init__(self, config: AyaVisionConfig):
super().__init__()
self.config = config
self.downsample_factor = config.downsample_factor
self.alignment_intermediate_size = getattr(
config, "alignment_intermediate_size", config.text_config.hidden_size
)
self.layernorm = nn.LayerNorm(
config.vision_config.hidden_size * (config.downsample_factor**2),
eps=config.adapter_layer_norm_eps,
)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * (config.downsample_factor**2),
self.alignment_intermediate_size,
bias=True,
)
self.act = ACT2FN["silu"] # SwiGLU uses SiLU activation
# For SwiGLU, project down to half size since we split intermediate dim
self.linear_2 = nn.Linear(
self.alignment_intermediate_size // 2,
config.text_config.hidden_size,
bias=True,
)
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
image_features = self.pixel_shuffle(image_features)
image_features = self.layernorm(image_features)
hidden_states = self.linear_1(image_features)
# Split along last dimension and apply SwiGLU
x, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.act(gate) * x
hidden_states = self.linear_2(hidden_states)
return hidden_states
def pixel_shuffle(self, image_features: torch.Tensor) -> torch.Tensor: # B, S, D
batch_size, seq_length, _ = image_features.shape
height = width = int(seq_length**0.5)
image_features = image_features.reshape(
image_features.shape[0], width, height, -1
)
channels = image_features.shape[-1]
image_features = image_features.reshape(
batch_size,
width,
int(height / self.downsample_factor),
int(channels * self.downsample_factor),
)
image_features = image_features.permute(0, 2, 1, 3)
image_features = image_features.reshape(
batch_size,
int(height / self.downsample_factor),
int(width / self.downsample_factor),
-1,
)
image_features = image_features.permute(0, 2, 1, 3)
return image_features
class AyaVisionProcessingInfo(BaseProcessingInfo):
def get_hf_config(self) -> AyaVisionConfig:
return self.ctx.get_hf_config(AyaVisionConfig)
def get_hf_processor(self, **kwargs: object) -> AyaVisionProcessor:
return self.ctx.get_hf_processor(AyaVisionProcessor, **kwargs)
def get_image_processor(self, **kwargs: object) -> GotOcr2ImageProcessor:
return self.get_hf_processor(**kwargs).image_processor
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": None}
def get_image_size_with_most_features(self) -> ImageSize:
image_processor = self.get_image_processor()
height = image_processor.size["height"]
width = image_processor.size["width"]
max_patches = image_processor.max_patches
return ImageSize(height=height * max_patches, width=width * max_patches)
def get_num_patches(
self,
*,
image_width: int,
image_height: int,
size: dict,
min_patches: int,
max_patches: int,
) -> int:
"""
Calculate the number of patches needed for a given image based on size
constraints. This method replicates and adjusts the logic from:
transformers/models/got_ocr2/image_processing_got_ocr2
"""
size = get_size_dict(size, default_to_square=False)
num_columns, num_rows = get_optimal_tiled_canvas(
(image_height, image_width),
(size["height"], size["width"]),
min_patches,
max_patches,
)
num_blocks = num_columns * num_rows
return num_blocks if num_blocks == 1 else num_blocks + 1
class AyaVisionDummyInputsBuilder(BaseDummyInputsBuilder[AyaVisionProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
image_size = self.info.get_image_size_with_most_features()
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=image_size.width,
height=image_size.height,
num_images=num_images,
overrides=image_overrides,
)
}
class AyaVisionMultiModalProcessor(BaseMultiModalProcessor[AyaVisionProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
processed_outputs = super()._call_hf_processor(
prompt,
mm_data,
mm_kwargs,
tok_kwargs,
)
hf_processor = self.info.get_hf_processor(**mm_kwargs)
image_processor = hf_processor.image_processor
# HF processor pops the `num_patches` kwarg, which is needed by vLLM
if (images := mm_data.get("images")) is not None:
parsed_images = (
self._get_data_parser()
.parse_mm_data({"image": images})
.get_items("image", ImageProcessorItems)
)
image_sizes = [
parsed_images.get_image_size(i) for i in range(len(parsed_images))
]
num_patches = [
self.info.get_num_patches(
image_width=image_size.width,
image_height=image_size.height,
size=image_processor.size,
min_patches=image_processor.min_patches,
max_patches=image_processor.max_patches,
)
for image_size in image_sizes
]
processed_outputs["num_patches"] = torch.tensor(num_patches)
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_patches = hf_inputs.get("num_patches", torch.empty(0))
return dict(
pixel_values=MultiModalFieldConfig.flat_from_sizes("image", num_patches),
num_patches=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token = hf_processor.image_token
img_patch_token = hf_processor.img_patch_token
image_processor = hf_processor.image_processor
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size: ImageSize = images.get_image_size(item_idx)
num_patches = self.info.get_num_patches(
image_width=image_size.width,
image_height=image_size.height,
size=image_processor.size,
min_patches=image_processor.min_patches,
max_patches=image_processor.max_patches,
)
repl = hf_processor._prompt_split_image(num_patches=num_patches)
return PromptUpdateDetails.select_text(repl, img_patch_token)
return [
PromptReplacement(
modality="image",
target=image_token,
replacement=get_replacement,
)
]
def _get_num_hidden_layers(hf_config: AyaVisionConfig) -> int:
feature_layers = hf_config.vision_feature_layer
num_hidden_layers = hf_config.vision_config.num_hidden_layers
# If we have one feature layer, initialize up to that layer
if isinstance(feature_layers, int):
return _get_layer_index(feature_layers, num_hidden_layers)
# If we have multiple feature layers, initialize up to the deepest m
elif isinstance(feature_layers, (list, tuple)):
return max(_get_layer_index(idx, num_hidden_layers) for idx in feature_layers)
raise TypeError(
f"vision_layer_feature type: {type(feature_layers)} is not supported"
)
def _get_layer_index(feature_layer_index: int, num_hidden_layers: int) -> int:
if feature_layer_index < 0:
return num_hidden_layers + feature_layer_index + 1
return feature_layer_index
@MULTIMODAL_REGISTRY.register_processor(
AyaVisionMultiModalProcessor,
info=AyaVisionProcessingInfo,
dummy_inputs=AyaVisionDummyInputsBuilder,
)
class AyaVisionForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
merge_by_field_config = True
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
# mapping for new names in checkpoint saved after transformers v4.52
"model.language_model.": "language_model.model.",
"model.vision_tower.": "vision_tower.",
"model.multi_modal_projector.": "multi_modal_projector.",
"lm_head.": "language_model.lm_head.",
}
)
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return "<image>"
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: AyaVisionConfig = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
num_hidden_layers = _get_num_hidden_layers(config)
self.config = config
self.quant_config = quant_config
self.multimodal_config = multimodal_config
self.vision_tower = SiglipVisionModel(
config.vision_config,
quant_config,
num_hidden_layers_override=num_hidden_layers,
prefix=maybe_prefix(prefix, "vision_model"),
)
self.vocab_size = config.text_config.vocab_size
self.multi_modal_projector = AyaVisionMultiModalProjector(config)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "model"),
# Cohere2ForCausalLM and CohereForCausalLM are the same on vllm
architectures=["Cohere2ForCausalLM"],
)
@property
def dtype(self):
return next(self.parameters()).dtype
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def _image_pixels_to_features(
self,
vision_tower: SiglipVisionModel,
pixel_values: torch.Tensor,
) -> torch.Tensor | tuple[torch.Tensor, ...]:
return vision_tower(
pixel_values.to(dtype=vision_tower.dtype),
feature_select_strategy=self.config.vision_feature_select_strategy,
)
def _process_image_input(
self, image_input: AyaVisionImagePixelInputs, **kwargs
) -> list[torch.Tensor]:
assert self.vision_tower is not None
pixel_values = image_input["pixel_values"]
num_patches = image_input["num_patches"]
image_features = self._image_pixels_to_features(
self.vision_tower, pixel_values=pixel_values
)
image_embeds = self.multi_modal_projector(image_features)
return [e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())]
def _parse_and_validate_image_input(
self, **kwargs: object
) -> AyaVisionImagePixelInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
num_patches = kwargs.pop("num_patches", None)
image_embeds = kwargs.pop("image_embeds", None)
assert image_embeds is None, "Aya Vision does not support image_embeds."
if pixel_values is None:
return None
return AyaVisionImagePixelInputs(
type="pixel_values",
pixel_values=pixel_values,
num_patches=num_patches,
resolve_bindings={
"h": self.config.vision_config.image_size,
"w": self.config.vision_config.image_size,
},
)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
return self._process_image_input(image_input, **kwargs)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> torch.Tensor | IntermediateTensors:
if intermediate_tensors is not None:
inputs_embeds = None
hidden_states = self.language_model.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.language_model.compute_logits(hidden_states)