vllm/vllm/model_executor/models/bert_with_rope.py
2025-10-15 11:14:41 +00:00

733 lines
25 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention.layers.encoder_only_attention import EncoderOnlyAttention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (
divide,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from vllm.model_executor.layers.activation import get_act_and_mul_fn, get_act_fn
from vllm.model_executor.layers.fused_moe import activation_without_mul, fused_topk
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.utils import (
AutoWeightsLoader,
WeightsMapper,
maybe_prefix,
)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from ..layers.pooler import ClassifierPooler, DispatchPooler, Pooler
from .bert import BertPooler
from .interfaces import SupportsCrossEncoding, SupportsQuant
from .interfaces_base import default_pooling_type
class BertWithRopeEmbedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
if config.position_embedding_type not in ["rope", "rotary"]:
raise ValueError(
"Only 'rotary'('rope') position_embedding_type" + " is supported"
)
self.word_embeddings = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
if config.type_vocab_size > 0:
self.token_type_embeddings = VocabParallelEmbedding(
config.type_vocab_size, config.hidden_size
)
else:
self.token_type_embeddings = None
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
token_type_ids: torch.Tensor | None = None,
) -> torch.Tensor:
input_shape = input_ids.size()
inputs_embeds = self.word_embeddings(input_ids)
embeddings = inputs_embeds
if self.token_type_embeddings is not None:
if token_type_ids is None:
token_type_ids = torch.zeros(
input_shape, dtype=torch.long, device=inputs_embeds.device
)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings += token_type_embeddings
embeddings = self.LayerNorm(embeddings)
return embeddings
class BertWithRopeAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
bias: bool = True,
rotary_kwargs: dict | None = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = self.total_num_heads
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
hidden_size=self.hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.rotary_emb = get_rope(**rotary_kwargs)
self.attn = EncoderOnlyAttention(
num_heads=self.num_heads,
head_size=self.head_dim,
scale=self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
self.out_proj = RowParallelLinear(
input_size=hidden_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.out_proj(attn_output)
return output
class BertWithRopeGatedMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.act_fn = get_act_and_mul_fn(hidden_act)
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(hidden_states)
hidden_states = self.act_fn(gate_up)
hidden_states, _ = self.down_proj(hidden_states)
return hidden_states
class BertWithRopeMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.act_fn = get_act_fn(hidden_act)
self.up_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.up_proj",
)
self.down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.up_proj(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states, _ = self.down_proj(hidden_states)
return hidden_states
class NomicMoE(nn.Module):
def __init__(
self,
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
params_dtype: torch.dtype | None = None,
tp_size: int | None = None,
):
super().__init__()
self.tp_size = tp_size or get_tensor_model_parallel_world_size()
self.num_total_experts = num_experts
self.top_k = top_k
self.hidden_size = hidden_size
self.total_intermediate_size = intermediate_size
self.intermediate_size = divide(intermediate_size, self.tp_size)
self.hidden_act = activation_without_mul(hidden_act)
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.router = ReplicatedLinear(
self.hidden_size, self.num_total_experts, bias=False
)
self.w1 = nn.Parameter(
torch.empty(
self.num_total_experts,
self.intermediate_size,
self.hidden_size,
device=current_platform.device_type,
dtype=self.params_dtype,
)
)
self.w2 = nn.Parameter(
torch.empty(
self.num_total_experts,
self.hidden_size,
self.intermediate_size,
device=current_platform.device_type,
dtype=self.params_dtype,
)
)
self.bias = nn.Parameter(torch.zeros(self.hidden_size))
set_weight_attrs(
self.w1,
{
"weight_loader": self.weight_loader,
},
)
set_weight_attrs(
self.w2,
{
"weight_loader": self.weight_loader,
},
)
def weight_loader(
self,
param: nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str,
):
# NOTE: Nomic-MoE has fused experts weights with shape
# (num_experts * intermediate_size, hidden_size)
tp_rank = get_tensor_model_parallel_rank()
param_data = param.data
shard_size = self.intermediate_size
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
if weight_name.endswith("w1"):
loaded_weight = loaded_weight.reshape(
self.num_total_experts,
self.total_intermediate_size,
self.hidden_size,
)[:, shard]
if weight_name.endswith("w2"):
loaded_weight = loaded_weight.reshape(
self.num_total_experts,
self.total_intermediate_size,
self.hidden_size,
)[:, shard].transpose(1, 2)
param_data.copy_(loaded_weight)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_size = hidden_states.shape
hidden_states = hidden_states.view(-1, self.hidden_size)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.router(hidden_states)
# FIXME(Isotr0py): This implementation is too tricky,
# we should use FusedMoE instead in the future
# after supporting ungated activation for it.
topk_weights, topk_ids, _ = fused_topk(
hidden_states, router_logits, self.top_k, renormalize=False
)
final_hidden_states = torch.ops.vllm.outplace_fused_experts(
hidden_states=hidden_states,
w1=self.w1,
w2=self.w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
activation=self.hidden_act,
)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_size) + self.bias
class BertWithRopeBlock(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
moe: bool = False,
bias: bool = True,
rotary_kwargs: dict | None = None,
prefix: str = "",
):
super().__init__()
self.attn = BertWithRopeAttention(
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.attention",
)
if moe:
self.mlp = NomicMoE(
num_experts=config.num_experts,
top_k=config.moe_top_k,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
else:
if config.hidden_act in ["silu", "geglu"]:
self.mlp = BertWithRopeGatedMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
else:
self.mlp = BertWithRopeMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.attn_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, positions: torch.Tensor, hidden_states: torch.Tensor):
attn_output = self.attn(positions, hidden_states)
hidden_states = self.attn_ln(hidden_states + attn_output)
mlp_out = self.mlp(hidden_states)
hidden_states = self.mlp_ln(hidden_states + mlp_out)
return hidden_states
class BertWithRopeEncoder(nn.Module):
def __init__(
self,
vllm_config: VllmConfig,
bias: bool = True,
rotary_kwargs: dict | None = None,
prefix: str = "",
):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
every_n = getattr(config, "moe_every_n_layers", 0)
self.layers = nn.ModuleList(
[
BertWithRopeBlock(
config=config,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
moe=every_n > 0 and (layer_idx % every_n == 1),
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.layer.{layer_idx}",
)
for layer_idx in range(config.num_hidden_layers)
]
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
for layer in self.layers:
hidden_states = layer(positions, hidden_states)
return hidden_states
@support_torch_compile
@default_pooling_type("CLS")
class BertWithRope(nn.Module, SupportsQuant):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
add_pooling_layer: bool = False,
):
super().__init__()
self.vllm_config = vllm_config
self.add_pooling_layer = add_pooling_layer
self.config = vllm_config.model_config.hf_config
self.embeddings = BertWithRopeEmbedding(self.config)
self.encoder = BertWithRopeEncoder(
vllm_config=vllm_config,
bias=getattr(self.config, "bias", True),
rotary_kwargs=self.config.rotary_kwargs,
prefix=f"{prefix}.encoder",
)
self.pooler = BertPooler(self.config) if add_pooling_layer else None
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
token_type_ids: torch.Tensor | None = None,
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embeddings(
input_ids=input_ids, token_type_ids=token_type_ids
)
return self.encoder(positions, hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
weights = self.hf_to_vllm_mapper.apply(weights)
if self.config.hidden_act in ["silu", "geglu"]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
else:
stacked_params_mapping = []
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if not self.add_pooling_layer and "pooler" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
if name.endswith((".w1", ".w2")):
# Nomic-MoE has fused experts weights
weight_loader(param, loaded_weight, name)
else:
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class NomicBertModel(BertWithRope):
# for https://huggingface.co/nomic-ai/nomic-bert-2048
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"attn.Wqkv": "attn.qkv_proj",
"norm1": "attn_ln",
"mlp.fc1.": "mlp.up_proj.",
"mlp.fc11": "mlp.up_proj",
"mlp.fc12": "mlp.gate_proj",
"mlp.fc2": "mlp.down_proj",
"norm2": "mlp_ln",
# MoE mapping
"experts.mlp.": "",
"experts.": "",
"router.layer": "router",
}
)
class GteNewModel(BertWithRope):
# for https://huggingface.co/Alibaba-NLP/new-impl
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"new.": "",
"layer": "layers",
"attention.qkv_proj": "attn.qkv_proj",
"attention.o_proj": "attn.out_proj",
}
)
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "", **kwargs):
super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
# GteNewModel only gate_up_proj does not have bias.
# Hack method learned from vllm/model_executor/models/glm.py
for layer in self.encoder.layers:
layer.mlp.gate_up_proj.bias = None
layer.mlp.gate_up_proj.skip_bias_add = True
def split_up_gate_proj(self, weights: Iterable[tuple[str, torch.Tensor]]):
n = "mlp.up_gate_proj"
for name, weight in weights:
if n in name:
up, gate = weight.chunk(2, dim=0)
yield name.replace(n, "mlp.up_proj"), up
yield name.replace(n, "mlp.gate_proj"), gate
else:
yield name, weight
def ignore_unnecessary_layers(self, weights: Iterable[tuple[str, torch.Tensor]]):
for name, weight in weights:
if name.startswith("classifier"):
continue
yield name, weight
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
weights = self.ignore_unnecessary_layers(weights)
weights = self.split_up_gate_proj(weights)
return super().load_weights(weights)
class SnowflakeGteNewModel(GteNewModel):
# for Snowflake/snowflake-arctic-embed-m-v2.0
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"layer": "layers",
"attention.qkv_proj": "attn.qkv_proj",
"attention.o_proj": "attn.out_proj",
}
)
class JinaRobertaModel(BertWithRope):
# for https://huggingface.co/jinaai/jina-embeddings-v3
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"mixer.Wqkv": "attn.qkv_proj",
"mixer.out_proj": "attn.out_proj",
"norm1": "attn_ln",
"mlp.fc1.": "mlp.up_proj.",
"mlp.fc2": "mlp.down_proj",
"norm2": "mlp_ln",
}
)
@torch.inference_mode()
def jina_merge_lora_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
# use for jina-embeddings-v3
# Merge Lora weights into a single weight tensor.
# This is a temporary solution until we have a better way to handle
scaling = self.config.lora_alpha / self.config.lora_rank
device = self.vllm_config.device_config.device
weights = {name: weight for name, weight in weights}
o = ".original"
a = ".0.lora_A"
b = ".0.lora_B"
# text-matching
i = -1
for name in list(weights.keys()):
if o in name:
dtype = weights[name].dtype
shape = weights[name].shape
weight_name = name[: -len(o)]
if "embeddings" in weight_name:
B = weights[weight_name + a][i].to(device).float()
A = weights[weight_name + b][i].to(device).float()
else:
B = weights[weight_name + b][i].to(device).float()
A = weights[weight_name + a][i].to(device).float()
weight = (
weights[weight_name + o].to(device)
+ torch.matmul(B, A).view(shape) * scaling
)
weight = weight.cpu().to(dtype)
weights[weight_name.replace(".parametrizations", "")] = weight
del (
weights[weight_name + o],
weights[weight_name + a],
weights[weight_name + b],
)
return [(name, weight) for name, weight in weights.items()]
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
weights = self.jina_merge_lora_weights(weights)
return super().load_weights(weights)
@default_pooling_type("CLS")
class GteNewForSequenceClassification(nn.Module, SupportsCrossEncoding):
is_pooling_model = True
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.new = GteNewModel(
vllm_config=vllm_config, prefix=prefix, add_pooling_layer=True
)
self.classifier = ReplicatedLinear(
config.hidden_size,
config.num_labels,
bias=True,
quant_config=quant_config,
params_dtype=vllm_config.model_config.head_dtype,
prefix=maybe_prefix(prefix, "classifier"),
return_bias=False,
)
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler(
{
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.classifier
),
"classify": ClassifierPooler(
pooling=self.new.pooler,
classifier=self.classifier,
act_fn="classify",
),
"score": ClassifierPooler(
pooling=self.new.pooler, classifier=self.classifier, act_fn="score"
),
}
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
loaded_params = loader.load_weights(weights)
return loaded_params
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.new.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
return self.new(
input_ids=input_ids,
positions=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors,
)