vllm/vllm/model_executor/models/deepseek_eagle.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

253 lines
9.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
import torch
import torch.nn as nn
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.deepseek_v2 import (
DeepseekV2DecoderLayer,
DeepseekV3ForCausalLM,
)
from .utils import AutoWeightsLoader, maybe_prefix
@support_torch_compile
class DeepseekV2Model(nn.Module):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
start_layer_id: int = 0,
) -> None:
super().__init__()
self.config = vllm_config.speculative_config.draft_model_config.hf_config
quant_config = vllm_config.quant_config
self.vocab_size = self.config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.config.vocab_size,
self.config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "embed_tokens"),
)
self.layers = nn.ModuleList(
[
DeepseekV2DecoderLayer(
vllm_config,
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
config=self.config,
)
for i in range(self.config.num_hidden_layers)
]
)
self.fc = nn.Linear(
self.config.model.hidden_size * 2,
self.config.model.hidden_size,
bias=False,
)
self.enorm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.hnorm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.norm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
input_embeds = self.embed_tokens(input_ids)
inputs = torch.cat(
[self.enorm(input_embeds), self.hnorm(hidden_states)], dim=-1
)
hidden_states = self.fc(inputs)
residual = None
for layer in self.layers:
hidden_states, residual = layer(
positions,
hidden_states,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states, hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
("fused_qkv_a_proj", "q_a_proj", 0),
("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts,
)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if ("mlp.experts." in name) and name not in params_dict:
continue
name_mapped = name.replace(weight_name, param_name)
# QKV fusion is optional, fall back to normal
# weight loading if it's not enabled
# if go with fusion option, then update name
if (
param_name == "fused_qkv_a_proj"
) and name_mapped not in params_dict:
continue
else:
name = name_mapped
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# if PP disabled then draft will share embed with target
if get_pp_group().world_size == 1 and "embed_tokens." in name:
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class EagleDeepseekV3ForCausalLM(DeepseekV3ForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
self.config = vllm_config.speculative_config.draft_model_config.hf_config
quant_config = vllm_config.quant_config
target_layer_num = vllm_config.model_config.get_num_layers(
vllm_config.parallel_config
)
self.model = DeepseekV2Model(
vllm_config=vllm_config, prefix="model", start_layer_id=target_layer_num
)
self.lm_head = ParallelLMHead(
self.config.vocab_size,
self.config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
logit_scale = getattr(self.config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(
self.config.vocab_size, scale=logit_scale
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if inputs_embeds is not None:
raise NotImplementedError(
f"{type(self).__name__} does not support multimodal inputs yet."
)
return self.model(input_ids, positions, hidden_states)
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
def transform(inputs):
name, loaded_weight = inputs
if "lm_head" not in name:
name = "model." + name
return name, loaded_weight
loader = AutoWeightsLoader(
self,
skip_prefixes=None,
)
loader.load_weights(map(transform, weights))