Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

340 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-NeoX model compatible with HuggingFace weights."""
from collections.abc import Iterable
from itertools import islice
import torch
from torch import nn
from transformers import GPTNeoXConfig
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (
AutoWeightsLoader,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class GPTNeoXAttention(nn.Module):
def __init__(
self,
config: GPTNeoXConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
self.bias = getattr(config, "attention_bias", True)
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.query_key_value = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=self.bias,
quant_config=quant_config,
)
self.dense = RowParallelLinear(
config.hidden_size,
config.hidden_size,
bias=self.bias,
quant_config=quant_config,
)
scaling = self.head_size**-0.5
rotary_dim = int(self.head_size * config.rotary_pct)
assert rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
self.attn = Attention(
self.num_heads,
self.head_size,
scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.dense(attn_output)
return output
class GPTNeoXMLP(nn.Module):
def __init__(
self,
config: GPTNeoXConfig,
quant_config: QuantizationConfig | None = None,
):
super().__init__()
self.dense_h_to_4h = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
quant_config=quant_config,
)
self.dense_4h_to_h = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
quant_config=quant_config,
)
self.act = get_act_fn(config.hidden_act)
def forward(self, hidden_states):
hidden_states, _ = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.dense_4h_to_h(hidden_states)
return hidden_states
class GPTNeoXLayer(nn.Module):
def __init__(
self,
config: GPTNeoXConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.attention = GPTNeoXAttention(
config, cache_config, quant_config, prefix=f"{prefix}.attention"
)
self.mlp = GPTNeoXMLP(config, quant_config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
attn_input = self.input_layernorm(hidden_states)
attn_output = self.attention(
position_ids=position_ids,
hidden_states=attn_input,
)
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_input = self.post_attention_layernorm(hidden_states)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_input = self.post_attention_layernorm(attn_output)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output
return hidden_states
@support_torch_compile
class GPTNeoXModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.embed_in = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: GPTNeoXLayer(
config, cache_config, quant_config, prefix=prefix
),
prefix=f"{prefix}.layers",
)
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states"], config.hidden_size
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_in(input_ids)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
hidden_states = intermediate_tensors["hidden_states"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states = layer(position_ids, hidden_states)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if (
"attention.bias" in name
or "attention.masked_bias" in name
or "rotary_emb.inv_freq" in name
):
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using OpenRLHF may include
# these tensors in the checkpoint. Skip them.
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
if "query_key_value" in name:
# NOTE: GPT-NeoX's fused QKV's output_dim has the shape of
# (num_heads * 3 * head_size), while the
# required shape is (3 * num_heads * head_size).
# Thus, we need weight conversion.
output_dim = getattr(param, "output_dim", None)
num_heads = self.config.num_attention_heads
if output_dim is not None:
loaded_weight_shape = loaded_weight.shape
loaded_weight = loaded_weight.view(
loaded_weight_shape[:output_dim]
+ (num_heads, 3, -1)
+ loaded_weight_shape[output_dim + 1 :]
)
loaded_weight = loaded_weight.transpose(output_dim, output_dim + 1)
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class GPTNeoXForCausalLM(nn.Module, SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.gpt_neox = GPTNeoXModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "gpt_neox")
)
self.embed_out = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "embed_out"),
)
if self.config.tie_word_embeddings:
self.embed_out.weight = self.gpt_neox.embed_in.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.gpt_neox.make_empty_intermediate_tensors
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.gpt_neox.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
hidden_states = self.gpt_neox(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.embed_out, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)