2025-10-15 11:14:41 +00:00

618 lines
22 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only Jamba model."""
from collections.abc import Iterable
from itertools import islice
import torch
from torch import nn
from transformers import JambaConfig
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_mixer import MambaMixer
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.llama import LlamaMLP as JambaMLP
from vllm.sequence import IntermediateTensors
from .interfaces import HasInnerState, IsHybrid, SupportsLoRA, SupportsPP
from .utils import (
AutoWeightsLoader,
WeightsMapper,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class JambaMoE(nn.Module):
def __init__(
self,
config: JambaConfig,
num_experts: int | None = None,
top_k: int | None = None,
params_dtype: torch.dtype | None = None,
tp_size: int | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.num_total_experts = num_experts or config.num_experts
self.top_k = top_k or config.num_experts_per_tok
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
if self.num_total_experts > 1:
self.router = ReplicatedLinear(
self.hidden_size,
self.num_total_experts,
bias=False,
quant_config=None,
params_dtype=params_dtype,
)
self.experts = FusedMoE(
self.num_total_experts,
self.top_k,
self.hidden_size,
self.intermediate_size,
tp_size=tp_size,
params_dtype=params_dtype,
reduce_results=True,
renormalize=False,
use_grouped_topk=False,
quant_config=quant_config,
prefix=f"{prefix}.experts",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, self.hidden_size)
# router_logits: (batch * sequence_length, n_experts)
if self.num_total_experts > 1:
router_logits, _ = self.router(hidden_states)
else:
router_logits = torch.ones(
(hidden_states.shape[0], 1),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
hidden_states = self.experts(hidden_states, router_logits)
return hidden_states.view(orig_shape)
class JambaMambaDecoderLayer(nn.Module):
def __init__(
self,
config: JambaConfig,
layer_idx: int,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
is_lora_enabled: bool | None = False,
prefix: str = "",
**kwargs,
) -> None:
super().__init__()
self.config = config
self.is_lora_enabled = is_lora_enabled
self.mamba = MambaMixer(
hidden_size=config.hidden_size,
ssm_state_size=config.mamba_d_state,
conv_kernel_size=config.mamba_d_conv,
intermediate_size=config.mamba_expand * config.hidden_size,
time_step_rank=config.mamba_dt_rank,
use_conv_bias=config.mamba_conv_bias,
use_bias=config.mamba_proj_bias,
use_rms_norm=True,
rms_norm_eps=config.rms_norm_eps,
activation=config.hidden_act,
is_lora_enabled=self.is_lora_enabled,
model_config=model_config,
cache_config=cache_config,
prefix=f"{prefix}.mixer",
)
num_experts = config.layers_num_experts[layer_idx]
if num_experts > 1:
self.feed_forward = JambaMoE(
config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = JambaMLP(
config.hidden_size,
config.intermediate_size,
config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
output = torch.empty_like(hidden_states)
self.mamba(hidden_states, output)
# Fully Connected
hidden_states, residual = self.pre_ff_layernorm(output, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
class JambaAttentionDecoderLayer(nn.Module):
def __init__(
self,
config: JambaConfig,
layer_idx: int,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
**kwargs,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = config.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
config.hidden_size,
bias=False,
quant_config=quant_config,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
num_experts = config.layers_num_experts[layer_idx]
if num_experts > 1:
self.feed_forward = JambaMoE(
config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = JambaMLP(
config.hidden_size,
config.intermediate_size,
config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def self_attention(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attention(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
hidden_states, residual = self.pre_ff_layernorm(hidden_states, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
ALL_DECODER_LAYER_TYPES = {
"attention": JambaAttentionDecoderLayer,
"mamba": JambaMambaDecoderLayer,
}
@support_torch_compile
class JambaModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
lora_vocab = (
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
if lora_config
else 0
)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
extra_kwargs = {"is_lora_enabled": bool(vllm_config.lora_config)}
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[layer_idx]]
return layer_class(
config,
layer_idx,
model_config,
cache_config,
quant_config=quant_config,
prefix=prefix,
**extra_kwargs,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(
positions=positions, hidden_states=hidden_states, residual=residual
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.final_layernorm(hidden_states, residual)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if "experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for (
param_name,
weight_name,
expert_id,
shard_id,
) in expert_params_mapping:
if weight_name not in name:
continue
if is_pp_missing_parameter(name, self):
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP, IsHybrid):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={".self_attn.": ".", ".A_log": ".A"},
)
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": ["gate_proj", "up_proj"],
"in_proj": ["in_proj"],
}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, (
"Jamba currently does not support prefix caching"
)
super().__init__()
self.config = config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.scheduler_config = scheduler_config
self.model = JambaModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config
else lora_config.lora_vocab_padding_size,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size, config.vocab_size
)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
):
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.mamba_cache.copy_inputs_before_cuda_graphs(input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.mamba1_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
vllm_config.cache_config.mamba_ssm_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, int], tuple[int, int]]:
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
hidden_size = hf_config.hidden_size
return MambaStateShapeCalculator.mamba1_state_shape(
tp_world_size=parallel_config.tensor_parallel_size,
intermediate_size=hf_config.mamba_expand * hidden_size,
state_size=hf_config.mamba_d_state,
conv_kernel=hf_config.mamba_d_conv,
)
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()
class JambaForSequenceClassification(JambaForCausalLM):
is_pooling_model = True
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
config = vllm_config.model_config.hf_config
num_labels: int = config.num_labels
score_bias: bool = getattr(config, "score_bias", False)
# TODO: The original reward weights have float32 accuracy data, we
# would like to load them in fp32 to get that extra precision.
# Currently weight_loader passes the weight which is already in bf16
self.score = nn.Linear(
config.hidden_size,
num_labels,
bias=score_bias,
dtype=vllm_config.model_config.head_dtype,
)
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler(
{
"token_classify": Pooler.for_token_classify(
pooler_config, classifier=self.score
),
"classify": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="classify"
),
"score": Pooler.for_classify(
pooler_config, classifier=self.score, act_fn="score"
),
}
)