mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 14:04:58 +08:00
Signed-off-by: Lucas Kabela <lucaskabela@meta.com> Signed-off-by: Lucas Kabela <lucasakabela@gmail.com>
1649 lines
58 KiB
Python
1649 lines
58 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py
|
|
# Copyright 2025 The vLLM team.
|
|
# Copyright 2025 The Qwen Team.
|
|
# Copyright 2025 The HuggingFace Inc. team.
|
|
# All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Qwen2.5-VL model compatible with HuggingFace weights."""
|
|
|
|
import math
|
|
from collections.abc import Callable, Iterable, Mapping, Sequence
|
|
from functools import lru_cache, partial
|
|
from typing import Annotated, Any, Literal, TypeAlias
|
|
|
|
import einops
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import BatchFeature, PretrainedConfig
|
|
from transformers.models.qwen2_5_vl import Qwen2_5_VLProcessor
|
|
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
|
|
Qwen2_5_VLConfig,
|
|
Qwen2_5_VLVisionConfig,
|
|
)
|
|
|
|
from vllm.attention.backends.registry import _Backend
|
|
from vllm.attention.layer import (
|
|
check_upstream_fa_availability,
|
|
maybe_get_vit_flash_attn_backend,
|
|
)
|
|
from vllm.attention.ops.vit_attn_wrappers import (
|
|
vit_flash_attn_wrapper,
|
|
vit_xformers_attn_wrapper,
|
|
)
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import parallel_state
|
|
from vllm.distributed import utils as dist_utils
|
|
from vllm.forward_context import set_forward_context
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import get_act_and_mul_fn
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.evs import (
|
|
compute_mrope_for_media,
|
|
compute_retained_tokens_count,
|
|
compute_retention_mask,
|
|
recompute_mrope_positions,
|
|
)
|
|
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
|
|
from vllm.multimodal.parse import MultiModalDataItems
|
|
from vllm.multimodal.processing import PromptReplacement, PromptUpdate
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.platform_utils import is_pin_memory_available
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import (
|
|
MultiModalEmbeddings,
|
|
SupportsEagle3,
|
|
SupportsLoRA,
|
|
SupportsMRoPE,
|
|
SupportsMultiModal,
|
|
SupportsMultiModalPruning,
|
|
SupportsPP,
|
|
SupportsQuant,
|
|
)
|
|
from .qwen2_vl import Qwen2VLDummyInputsBuilder as Qwen2_5_VLDummyInputsBuilder
|
|
from .qwen2_vl import (
|
|
Qwen2VLMultiModalProcessor,
|
|
Qwen2VLProcessingInfo,
|
|
apply_rotary_pos_emb_vision,
|
|
)
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
cast_overflow_tensors,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
from .vision import (
|
|
conv3d_to_linear_weight,
|
|
get_vit_attn_backend,
|
|
run_dp_sharded_mrope_vision_model,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# === Vision Inputs === #
|
|
|
|
|
|
class Qwen2_5_VLImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- np: Number of patches
|
|
- ni: Number of images
|
|
- cps: Number of channels * patch_size * patch_size
|
|
|
|
Historical context:
|
|
- pixel_values shape: (num_patches, num_channels * patch_size *
|
|
patch_size)
|
|
- image_grid_thw shape: (num_images, 3) in (grid_t, grid_h, grid_w)
|
|
format.
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
|
|
pixel_values: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("np", "cps"),
|
|
]
|
|
|
|
image_grid_thw: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("ni", 3),
|
|
]
|
|
|
|
|
|
class Qwen2_5_VLImageEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- nf: Number of image features
|
|
- hs: Hidden size
|
|
- ni: Number of images
|
|
|
|
Historical context:
|
|
- image_embeds shape: (num_image_features, hidden_size)
|
|
- num_image_features varies based on the number and resolution of the
|
|
images.
|
|
- hidden_size must match the hidden size of language model backbone.
|
|
- image_grid_thw shape: (num_images, 3) in (grid_t, grid_h, grid_w)
|
|
format
|
|
"""
|
|
|
|
type: Literal["image_embeds"]
|
|
|
|
image_embeds: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("nf", "hs"),
|
|
]
|
|
|
|
image_grid_thw: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("ni", 3),
|
|
]
|
|
|
|
|
|
Qwen2_5_VLImageInputs: TypeAlias = (
|
|
Qwen2_5_VLImagePixelInputs | Qwen2_5_VLImageEmbeddingInputs
|
|
)
|
|
|
|
|
|
class Qwen2_5_VLVideoPixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- np: Number of patches
|
|
- nv: Number of videos
|
|
- ctps: Number of channels * temporal_patch_size * patch_size *
|
|
patch_size
|
|
|
|
Historical context:
|
|
- pixel_values_videos shape: (num_patches, num_channels *
|
|
temporal_patch_size * patch_size * patch_size)
|
|
- video_grid_thw shape: (num_videos, 3) in (grid_t, grid_h, grid_w)
|
|
format
|
|
- second_per_grid_ts: The video time interval (in seconds) for each
|
|
grid along the temporal dimension in the 3D position IDs. Returned
|
|
when `videos` is not `None`.
|
|
"""
|
|
|
|
type: Literal["pixel_values_videos"]
|
|
|
|
pixel_values_videos: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("np", "ctps"),
|
|
]
|
|
|
|
video_grid_thw: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("nv", 3),
|
|
]
|
|
|
|
second_per_grid_ts: Annotated[
|
|
torch.Tensor | None,
|
|
TensorShape("nv"),
|
|
]
|
|
|
|
|
|
class Qwen2_5_VLVideoEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- nf: Number of video features
|
|
- hs: Hidden size
|
|
- nv: Number of videos
|
|
|
|
Historical context:
|
|
- video_embeds shape: (num_video_features, hidden_size)
|
|
- num_video_features varies based on the number and resolution of the
|
|
videos.
|
|
- hidden_size must match the hidden size of language model backbone.
|
|
- video_grid_thw shape: (num_videos, 3) in (grid_t, grid_h, grid_w)
|
|
format
|
|
"""
|
|
|
|
type: Literal["video_embeds"]
|
|
|
|
video_embeds: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("nf", "hs"),
|
|
]
|
|
|
|
video_grid_thw: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("nv", 3),
|
|
]
|
|
|
|
|
|
Qwen2_5_VLVideoInputs: TypeAlias = (
|
|
Qwen2_5_VLVideoPixelInputs | Qwen2_5_VLVideoEmbeddingInputs
|
|
)
|
|
|
|
# === Vision Encoder === #
|
|
|
|
|
|
class Qwen2_5_VisionMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
hidden_features: int,
|
|
bias: bool = False,
|
|
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
input_size=in_features,
|
|
output_sizes=[hidden_features] * 2, # [gate_proj, up_proj]
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
|
|
self.down_proj = RowParallelLinear(
|
|
hidden_features,
|
|
in_features,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.act_fn = act_fn
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x_down, _ = self.down_proj(x)
|
|
return x_down
|
|
|
|
|
|
def all_gather_interleave(local_tensor, hidden_size: int, tp_size: int):
|
|
"""All-gather the input tensor interleavely across model parallel group."""
|
|
import torch.distributed as dist
|
|
|
|
gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
|
|
dist.all_gather(
|
|
gathered_tensors, local_tensor, group=parallel_state.get_tp_group().device_group
|
|
)
|
|
|
|
gathered_tensors_split = [
|
|
torch.split(tensor, hidden_size // tp_size, -1) for tensor in gathered_tensors
|
|
]
|
|
ordered_tensors = [
|
|
tensor for pair in zip(*gathered_tensors_split) for tensor in pair
|
|
]
|
|
result_tensor = torch.cat(ordered_tensors, dim=-1)
|
|
return result_tensor
|
|
|
|
|
|
class Qwen2_5_VisionAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
projection_size: int,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend: _Backend = _Backend.TORCH_SDPA,
|
|
use_upstream_fa: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
# Per attention head and per partition values.
|
|
self.tp_size = (
|
|
1
|
|
if use_data_parallel
|
|
else parallel_state.get_tensor_model_parallel_world_size()
|
|
)
|
|
self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
|
|
self.hidden_size_per_attention_head = dist_utils.divide(
|
|
projection_size, num_heads
|
|
)
|
|
self.num_attention_heads_per_partition = dist_utils.divide(
|
|
num_heads, self.tp_size
|
|
)
|
|
|
|
self.qkv = QKVParallelLinear(
|
|
hidden_size=embed_dim,
|
|
head_size=self.hidden_size_per_attention_head,
|
|
total_num_heads=num_heads,
|
|
total_num_kv_heads=num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
|
|
self.proj = RowParallelLinear(
|
|
input_size=projection_size,
|
|
output_size=embed_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.proj",
|
|
disable_tp=use_data_parallel,
|
|
)
|
|
self.attn_backend = attn_backend
|
|
self.use_upstream_fa = use_upstream_fa
|
|
self.attn_backend, self.flash_attn_varlen_func = (
|
|
maybe_get_vit_flash_attn_backend(
|
|
self.attn_backend,
|
|
self.use_upstream_fa,
|
|
)
|
|
)
|
|
self.is_flash_attn_backend = self.attn_backend in {
|
|
_Backend.FLASH_ATTN,
|
|
_Backend.ROCM_AITER_FA,
|
|
}
|
|
|
|
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
|
|
# [s, b, 3 * head * head_dim]
|
|
seq_len, bs, _ = qkv.shape
|
|
if self.tp_size > 1:
|
|
qkv = all_gather_interleave(qkv, self.qkv.hidden_size, self.tp_size)
|
|
|
|
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
|
|
q, k, v = qkv.chunk(3, dim=2)
|
|
|
|
# 3 * [s, b, head * head_dim]
|
|
if self.tp_size > 1:
|
|
splitter = partial(
|
|
dist_utils.split_tensor_along_last_dim, num_partitions=self.tp_size
|
|
)
|
|
q = splitter(q)[self.tp_rank]
|
|
k = splitter(k)[self.tp_rank]
|
|
v = splitter(v)[self.tp_rank]
|
|
|
|
# 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
|
|
new_shape = (
|
|
seq_len,
|
|
bs,
|
|
self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head,
|
|
)
|
|
q, k, v = (x.view(*new_shape) for x in (q, k, v))
|
|
return q, k, v
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
rotary_pos_emb: torch.Tensor,
|
|
max_seqlen: torch.Tensor, # Only used for Flash Attention
|
|
seqlens: torch.Tensor, # Only used for xFormers
|
|
) -> torch.Tensor:
|
|
# [s, b, c] --> [s, b, head * 3 * head_dim]
|
|
x, _ = self.qkv(x)
|
|
|
|
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
|
|
q, k, v = self.split_qkv(x)
|
|
batch_size = q.shape[1]
|
|
|
|
q, k, v = (einops.rearrange(x, "s b ... -> b s ...") for x in (q, k, v))
|
|
if rotary_pos_emb is not None:
|
|
# [2 * b, s, heads, head_dim]
|
|
qk_concat = torch.cat([q, k], dim=0)
|
|
qk_rotated = apply_rotary_pos_emb_vision(qk_concat, rotary_pos_emb)
|
|
q, k = torch.chunk(qk_rotated, 2, dim=0)
|
|
|
|
if self.is_flash_attn_backend:
|
|
context_layer = vit_flash_attn_wrapper(
|
|
q,
|
|
k,
|
|
v,
|
|
cu_seqlens,
|
|
max_seqlen,
|
|
batch_size,
|
|
self.attn_backend == _Backend.ROCM_AITER_FA,
|
|
self.use_upstream_fa,
|
|
)
|
|
elif self.attn_backend == _Backend.TORCH_SDPA:
|
|
# Execute attention entry by entry for speed & less VRAM.
|
|
outputs = []
|
|
for i in range(1, len(cu_seqlens)):
|
|
start_idx = cu_seqlens[i - 1]
|
|
end_idx = cu_seqlens[i]
|
|
q_i = q[:, start_idx:end_idx]
|
|
k_i = k[:, start_idx:end_idx]
|
|
v_i = v[:, start_idx:end_idx]
|
|
q_i, k_i, v_i = (
|
|
einops.rearrange(x, "b s h d -> b h s d") for x in [q_i, k_i, v_i]
|
|
)
|
|
output_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
|
|
output_i = einops.rearrange(output_i, "b h s d -> b s h d ")
|
|
outputs.append(output_i)
|
|
context_layer = torch.cat(outputs, dim=1)
|
|
context_layer = einops.rearrange(
|
|
context_layer, "b s h d -> s b (h d)"
|
|
).contiguous()
|
|
elif self.attn_backend == _Backend.XFORMERS:
|
|
context_layer = vit_xformers_attn_wrapper(q, k, v, seqlens)
|
|
|
|
output, _ = self.proj(context_layer)
|
|
return output
|
|
|
|
|
|
@support_torch_compile(
|
|
dynamic_arg_dims={
|
|
"x": 0,
|
|
"cu_seqlens": 0,
|
|
"rotary_pos_emb": 0,
|
|
"seqlens": 0,
|
|
},
|
|
mark_unbacked_dims={"seqlens": 0},
|
|
)
|
|
class Qwen2_5_VisionBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int,
|
|
mlp_hidden_dim: int,
|
|
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
|
|
norm_layer: Callable[[int], nn.Module] | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend: _Backend = _Backend.TORCH_SDPA,
|
|
use_upstream_fa: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
if norm_layer is None:
|
|
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
|
self.norm1 = norm_layer(dim)
|
|
self.norm2 = norm_layer(dim)
|
|
self.attn = Qwen2_5_VisionAttention(
|
|
embed_dim=dim,
|
|
num_heads=num_heads,
|
|
projection_size=dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
use_data_parallel=use_data_parallel,
|
|
attn_backend=attn_backend,
|
|
use_upstream_fa=use_upstream_fa,
|
|
)
|
|
self.mlp = Qwen2_5_VisionMLP(
|
|
dim,
|
|
mlp_hidden_dim,
|
|
act_fn=act_fn,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
rotary_pos_emb: torch.Tensor,
|
|
max_seqlen: torch.Tensor, # Only used for Flash Attention
|
|
seqlens: torch.Tensor, # Only used for xFormers
|
|
) -> torch.Tensor:
|
|
x_attn = self.attn(
|
|
self.norm1(x),
|
|
cu_seqlens=cu_seqlens,
|
|
rotary_pos_emb=rotary_pos_emb,
|
|
max_seqlen=max_seqlen,
|
|
seqlens=seqlens,
|
|
)
|
|
x_fused_norm, residual = self.norm2(x, residual=x_attn)
|
|
x = residual + self.mlp(x_fused_norm)
|
|
return x
|
|
|
|
|
|
@support_torch_compile(
|
|
dynamic_arg_dims={
|
|
"x": 0,
|
|
}
|
|
)
|
|
class Qwen2_5_VisionPatchEmbed(nn.Module):
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 14,
|
|
temporal_patch_size: int = 2,
|
|
in_channels: int = 3,
|
|
hidden_size: int = 1152,
|
|
) -> None:
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.temporal_patch_size = temporal_patch_size
|
|
self.hidden_size = hidden_size
|
|
|
|
kernel_size = (temporal_patch_size, patch_size, patch_size)
|
|
self.proj = ReplicatedLinear(
|
|
in_channels * math.prod(kernel_size),
|
|
hidden_size,
|
|
bias=False,
|
|
return_bias=False,
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
|
|
@support_torch_compile(
|
|
dynamic_arg_dims={
|
|
"x": 0,
|
|
}
|
|
)
|
|
class Qwen2_5_VisionPatchMerger(nn.Module):
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
context_dim: int,
|
|
norm_layer: Callable[[int], nn.Module] | None = None,
|
|
spatial_merge_size: int = 2,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = context_dim * (spatial_merge_size**2)
|
|
if norm_layer is None:
|
|
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
|
self.ln_q = norm_layer(context_dim)
|
|
|
|
self.mlp = nn.Sequential(
|
|
ColumnParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp.0",
|
|
return_bias=False,
|
|
disable_tp=use_data_parallel,
|
|
),
|
|
nn.GELU(),
|
|
RowParallelLinear(
|
|
self.hidden_size,
|
|
d_model,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp.2",
|
|
return_bias=False,
|
|
disable_tp=use_data_parallel,
|
|
),
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.ln_q(x)
|
|
x = x.view(-1, self.hidden_size)
|
|
out = self.mlp(x)
|
|
return out
|
|
|
|
|
|
class Qwen2_5_VisionRotaryEmbedding(nn.Module):
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.theta = theta
|
|
inv_freq = 1.0 / (
|
|
theta ** (torch.arange(0, dim, 2, dtype=torch.float, device="cpu") / dim)
|
|
)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self._seq_len_cached = 0
|
|
self._freqs_cached = None
|
|
|
|
def update_freqs_cache(self, seqlen: int) -> None:
|
|
if seqlen > self._seq_len_cached:
|
|
seqlen *= 2
|
|
self._seq_len_cached = seqlen
|
|
self.inv_freq = 1.0 / (
|
|
self.theta
|
|
** (
|
|
torch.arange(
|
|
0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device
|
|
)
|
|
/ self.dim
|
|
)
|
|
)
|
|
seq = torch.arange(
|
|
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
|
|
)
|
|
freqs = torch.outer(seq, self.inv_freq)
|
|
self._freqs_cached = freqs
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor:
|
|
self.update_freqs_cache(seqlen)
|
|
return self._freqs_cached[:seqlen]
|
|
|
|
|
|
class Qwen2_5_VisionTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
vision_config: Qwen2_5_VLVisionConfig,
|
|
norm_eps: float = 1e-6,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend_override: _Backend | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
patch_size = vision_config.patch_size
|
|
temporal_patch_size = vision_config.temporal_patch_size
|
|
in_channels = vision_config.in_channels
|
|
depth = vision_config.depth
|
|
self.hidden_size = vision_config.hidden_size
|
|
self.num_heads = vision_config.num_heads
|
|
self.use_data_parallel = use_data_parallel
|
|
self.out_hidden_size = vision_config.out_hidden_size
|
|
|
|
# args for get_window_index_thw
|
|
self.window_size = vision_config.window_size
|
|
self.patch_size = vision_config.patch_size
|
|
self.spatial_merge_size = vision_config.spatial_merge_size
|
|
self.fullatt_block_indexes = vision_config.fullatt_block_indexes
|
|
self.spatial_merge_unit = self.spatial_merge_size**2
|
|
# TODO[@lucaskabela]: Investigate fixing this usage
|
|
# see https://github.com/vllm-project/vllm/issues/27044
|
|
# DO NOT MOVE THIS IMPORT
|
|
from vllm.compilation.backends import set_model_tag
|
|
|
|
with set_model_tag("Qwen2_5_VisionPatchEmbed"):
|
|
self.patch_embed = Qwen2_5_VisionPatchEmbed(
|
|
patch_size=patch_size,
|
|
temporal_patch_size=temporal_patch_size,
|
|
in_channels=in_channels,
|
|
hidden_size=self.hidden_size,
|
|
)
|
|
|
|
norm_layer = partial(RMSNorm, eps=norm_eps)
|
|
head_dim = self.hidden_size // self.num_heads
|
|
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
|
|
|
|
use_upstream_fa = False
|
|
self.attn_backend = get_vit_attn_backend(
|
|
head_size=head_dim,
|
|
dtype=torch.get_default_dtype(),
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
if (
|
|
self.attn_backend != _Backend.FLASH_ATTN
|
|
and self.attn_backend != _Backend.ROCM_AITER_FA
|
|
and check_upstream_fa_availability(torch.get_default_dtype())
|
|
):
|
|
self.attn_backend = _Backend.FLASH_ATTN
|
|
use_upstream_fa = True
|
|
|
|
if self.attn_backend not in {
|
|
_Backend.FLASH_ATTN,
|
|
_Backend.TORCH_SDPA,
|
|
_Backend.XFORMERS,
|
|
_Backend.ROCM_AITER_FA,
|
|
}:
|
|
raise RuntimeError(
|
|
f"Qwen2.5-VL does not support {self.attn_backend} backend now."
|
|
)
|
|
|
|
with set_model_tag("Qwen2_5_VisionBlock"):
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
Qwen2_5_VisionBlock(
|
|
dim=self.hidden_size,
|
|
num_heads=self.num_heads,
|
|
mlp_hidden_dim=vision_config.intermediate_size,
|
|
act_fn=get_act_and_mul_fn(vision_config.hidden_act),
|
|
norm_layer=norm_layer,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.blocks.{layer_idx}",
|
|
use_data_parallel=use_data_parallel,
|
|
attn_backend=self.attn_backend,
|
|
use_upstream_fa=use_upstream_fa,
|
|
)
|
|
for layer_idx in range(depth)
|
|
]
|
|
)
|
|
|
|
with set_model_tag("Qwen2_5_VisionPatchMerger"):
|
|
self.merger = Qwen2_5_VisionPatchMerger(
|
|
d_model=vision_config.out_hidden_size,
|
|
context_dim=self.hidden_size,
|
|
norm_layer=norm_layer,
|
|
spatial_merge_size=self.spatial_merge_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.merger",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
@property
|
|
def dtype(self) -> torch.dtype:
|
|
return self.patch_embed.proj.weight.dtype
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
return self.patch_embed.proj.weight.device
|
|
|
|
def rotary_pos_emb_thw(self, t, h, w):
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
hpos_ids = (
|
|
hpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
)
|
|
.permute(0, 2, 1, 3)
|
|
.flatten()
|
|
)
|
|
wpos_ids = (
|
|
wpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
)
|
|
.permute(0, 2, 1, 3)
|
|
.flatten()
|
|
)
|
|
pos_ids = torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
|
|
max_size = max(h, w)
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_size)
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
rotary_pos_emb = rotary_pos_emb.reshape(
|
|
rotary_pos_emb.shape[0] // self.spatial_merge_unit,
|
|
self.spatial_merge_unit,
|
|
-1,
|
|
)
|
|
|
|
return rotary_pos_emb
|
|
|
|
def get_window_index_thw(self, grid_t, grid_h, grid_w):
|
|
vit_merger_window_size = (
|
|
self.window_size // self.spatial_merge_size // self.patch_size
|
|
)
|
|
|
|
llm_grid_h = grid_h // self.spatial_merge_size
|
|
llm_grid_w = grid_w // self.spatial_merge_size
|
|
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
|
|
grid_t, llm_grid_h, llm_grid_w
|
|
)
|
|
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
|
|
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
|
|
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
|
|
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
|
|
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
|
|
index_padded = index_padded.reshape(
|
|
grid_t,
|
|
num_windows_h,
|
|
vit_merger_window_size,
|
|
num_windows_w,
|
|
vit_merger_window_size,
|
|
)
|
|
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
|
|
grid_t,
|
|
num_windows_h * num_windows_w,
|
|
vit_merger_window_size,
|
|
vit_merger_window_size,
|
|
)
|
|
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
|
|
index_padded = index_padded.reshape(-1)
|
|
index_new = index_padded[index_padded != -100]
|
|
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit
|
|
cu_seqlens_tmp = cu_seqlens_tmp.to(dtype=torch.int32)
|
|
cu_seqlens_tmp = torch.unique_consecutive(cu_seqlens_tmp)
|
|
|
|
return index_new, cu_seqlens_tmp
|
|
|
|
@lru_cache(maxsize=1024) # noqa: B019
|
|
def get_rope_by_thw(self, t, h, w):
|
|
window_index_thw, cu_seqlens_window_thw = self.get_window_index_thw(t, h, w)
|
|
rotary_pos_emb_thw = self.rotary_pos_emb_thw(t, h, w)
|
|
rotary_pos_emb_thw = rotary_pos_emb_thw[window_index_thw, :, :]
|
|
rotary_pos_emb_thw = rotary_pos_emb_thw.flatten(start_dim=0, end_dim=1)
|
|
cu_seqlens_thw = torch.repeat_interleave(
|
|
torch.tensor([h * w], dtype=torch.int32), t
|
|
)
|
|
return (
|
|
rotary_pos_emb_thw,
|
|
window_index_thw,
|
|
cu_seqlens_window_thw,
|
|
cu_seqlens_thw,
|
|
)
|
|
|
|
def compute_attn_mask_seqlen(
|
|
self,
|
|
cu_seqlens: torch.Tensor,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
max_seqlen, seqlens = (
|
|
torch.zeros(1, device=cu_seqlens.device),
|
|
torch.zeros(1, device=cu_seqlens.device),
|
|
)
|
|
if (
|
|
self.attn_backend == _Backend.FLASH_ATTN
|
|
or self.attn_backend == _Backend.ROCM_AITER_FA
|
|
):
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
|
|
elif self.attn_backend == _Backend.XFORMERS:
|
|
seqlens = cu_seqlens[1:] - cu_seqlens[:-1]
|
|
return max_seqlen, seqlens
|
|
|
|
@staticmethod
|
|
def invert_permutation(perm: torch.Tensor) -> torch.Tensor:
|
|
# building the inverse permutation in O(n) time
|
|
inv = torch.empty_like(perm, pin_memory=is_pin_memory_available())
|
|
inv[perm] = torch.arange(perm.numel(), device=perm.device, dtype=perm.dtype)
|
|
return inv
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
grid_thw: list[list[int]],
|
|
) -> torch.Tensor:
|
|
# patchify
|
|
seq_len, _ = x.size()
|
|
rotary_pos_emb = []
|
|
window_index: list = []
|
|
cu_window_seqlens: list = [torch.tensor([0], dtype=torch.int32)]
|
|
cu_seqlens: list = []
|
|
|
|
hidden_states = x.to(device=self.device, dtype=self.dtype)
|
|
hidden_states = self.patch_embed(hidden_states)
|
|
|
|
window_index_id = 0
|
|
cu_window_seqlens_last = 0
|
|
for t, h, w in grid_thw:
|
|
t, h, w = int(t), int(h), int(w)
|
|
llm_h = h // self.spatial_merge_size
|
|
llm_w = w // self.spatial_merge_size
|
|
|
|
(
|
|
rotary_pos_emb_thw,
|
|
window_index_thw,
|
|
cu_seqlens_window_thw,
|
|
cu_seqlens_thw,
|
|
) = self.get_rope_by_thw(t, h, w)
|
|
|
|
window_index.append(window_index_thw + window_index_id)
|
|
window_index_id += t * llm_h * llm_w
|
|
|
|
cu_seqlens_window_thw = cu_seqlens_window_thw + cu_window_seqlens_last
|
|
cu_window_seqlens_last = cu_seqlens_window_thw[-1]
|
|
cu_window_seqlens.append(cu_seqlens_window_thw)
|
|
|
|
rotary_pos_emb.append(rotary_pos_emb_thw)
|
|
|
|
cu_seqlens.append(cu_seqlens_thw)
|
|
|
|
rotary_pos_emb = torch.cat(rotary_pos_emb)
|
|
window_index = torch.cat(window_index)
|
|
# compute reverse indices
|
|
reverse_indices = self.invert_permutation(window_index)
|
|
cu_window_seqlens = torch.cat(cu_window_seqlens)
|
|
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
|
|
cu_seqlens = torch.cat(cu_seqlens)
|
|
cu_seqlens = torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32)
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
|
|
|
|
# transformers
|
|
# pre-compute seqlens for window/full attn to reduce cuMemcpy operations
|
|
max_seqlen_full, seqlens_full = self.compute_attn_mask_seqlen(cu_seqlens)
|
|
max_seqlen_window, seqlens_window = self.compute_attn_mask_seqlen(
|
|
cu_window_seqlens
|
|
)
|
|
|
|
cu_seqlens = cu_seqlens.to(device=self.device, non_blocking=True)
|
|
cu_window_seqlens = cu_window_seqlens.to(device=self.device, non_blocking=True)
|
|
rotary_pos_emb = rotary_pos_emb.to(device=self.device, non_blocking=True)
|
|
window_index = window_index.to(device=hidden_states.device, non_blocking=True)
|
|
reverse_indices = reverse_indices.to(
|
|
device=hidden_states.device, non_blocking=True
|
|
)
|
|
|
|
hidden_states = hidden_states.reshape(
|
|
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
|
|
)
|
|
hidden_states = hidden_states[window_index, :, :]
|
|
hidden_states = hidden_states.reshape(seq_len, -1)
|
|
|
|
hidden_states = hidden_states.unsqueeze(1)
|
|
|
|
for layer_num, blk in enumerate(self.blocks):
|
|
if layer_num in self.fullatt_block_indexes:
|
|
cu_seqlens_now = cu_seqlens
|
|
max_seqlen_now = max_seqlen_full
|
|
seqlens_now = seqlens_full
|
|
else:
|
|
cu_seqlens_now = cu_window_seqlens
|
|
max_seqlen_now = max_seqlen_window
|
|
seqlens_now = seqlens_window
|
|
|
|
hidden_states = blk(
|
|
hidden_states,
|
|
cu_seqlens=cu_seqlens_now,
|
|
rotary_pos_emb=rotary_pos_emb,
|
|
max_seqlen=max_seqlen_now,
|
|
seqlens=seqlens_now,
|
|
)
|
|
|
|
# For Qwen2.5-VL-3B, float16 will overflow at last block
|
|
# for long visual tokens sequences.
|
|
if hidden_states.dtype == torch.float16:
|
|
hidden_states = cast_overflow_tensors(hidden_states)
|
|
|
|
# adapter
|
|
hidden_states = self.merger(hidden_states)
|
|
hidden_states = hidden_states[reverse_indices, :]
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("attn.qkv.", "attn.q.", "q"),
|
|
("attn.qkv.", "attn.k.", "k"),
|
|
("attn.qkv.", "attn.v.", "v"),
|
|
("mlp.gate_up_proj.", "mlp.gate_proj.", 0),
|
|
("mlp.gate_up_proj.", "mlp.up_proj.", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: set[str] = set()
|
|
|
|
for name, loaded_weight in weights:
|
|
if name.endswith("patch_embed.proj.weight"):
|
|
loaded_weight = conv3d_to_linear_weight(loaded_weight)
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class Qwen2_5_VLProcessingInfo(Qwen2VLProcessingInfo):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(Qwen2_5_VLConfig)
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> Qwen2_5_VLProcessor:
|
|
return self.ctx.get_hf_processor(
|
|
Qwen2_5_VLProcessor,
|
|
use_fast=kwargs.pop("use_fast", True),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
class Qwen2_5_VLMultiModalProcessor(Qwen2VLMultiModalProcessor):
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
**super()._get_mm_fields_config(hf_inputs, hf_processor_mm_kwargs),
|
|
second_per_grid_ts=MultiModalFieldConfig.batched("video"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
|
|
tokenizer = self.info.get_tokenizer()
|
|
vocab = tokenizer.get_vocab()
|
|
|
|
placeholder = {
|
|
"image": vocab[hf_processor.image_token],
|
|
"video": vocab[hf_processor.video_token],
|
|
}
|
|
|
|
merge_length = image_processor.merge_size**2
|
|
|
|
def get_replacement_qwen2vl(item_idx: int, modality: str):
|
|
out_item = out_mm_kwargs[modality][item_idx]
|
|
grid_thw = out_item[f"{modality}_grid_thw"].data
|
|
assert isinstance(grid_thw, torch.Tensor)
|
|
|
|
num_tokens = int(grid_thw.prod()) // merge_length
|
|
|
|
# EVS-specific code
|
|
video_pruning_rate = self.info.ctx.get_mm_config().video_pruning_rate
|
|
if (
|
|
modality == "video"
|
|
and video_pruning_rate is not None
|
|
and video_pruning_rate > 0.0
|
|
):
|
|
T, H, W = map(int, grid_thw)
|
|
tokens_per_frame = (H // image_processor.merge_size) * (
|
|
W // image_processor.merge_size
|
|
)
|
|
num_tokens = compute_retained_tokens_count(
|
|
tokens_per_frame,
|
|
T,
|
|
video_pruning_rate,
|
|
)
|
|
# End of EVS-specific code
|
|
|
|
return [placeholder[modality]] * num_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality=modality,
|
|
target=[placeholder[modality]],
|
|
replacement=partial(get_replacement_qwen2vl, modality=modality),
|
|
)
|
|
for modality in ("image", "video")
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Qwen2_5_VLMultiModalProcessor,
|
|
info=Qwen2_5_VLProcessingInfo,
|
|
dummy_inputs=Qwen2_5_VLDummyInputsBuilder,
|
|
)
|
|
class Qwen2_5_VLForConditionalGeneration(
|
|
nn.Module,
|
|
SupportsMultiModal,
|
|
SupportsLoRA,
|
|
SupportsPP,
|
|
SupportsQuant,
|
|
SupportsEagle3,
|
|
SupportsMultiModalPruning,
|
|
SupportsMRoPE,
|
|
):
|
|
merge_by_field_config = True
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
# To ensure correct weight loading and mapping.
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
# mapping for new names in checkpoint saved after transformers v4.52
|
|
"model.language_model.": "language_model.model.",
|
|
"model.visual.": "visual.",
|
|
# mapping for original checkpoint
|
|
"lm_head.": "language_model.lm_head.",
|
|
"model.": "language_model.model.",
|
|
}
|
|
)
|
|
|
|
supports_encoder_tp_data = True
|
|
|
|
def get_mrope_input_positions(
|
|
self,
|
|
input_tokens: list[int],
|
|
hf_config: PretrainedConfig,
|
|
image_grid_thw: list[list[int]] | torch.Tensor,
|
|
video_grid_thw: list[list[int]] | torch.Tensor,
|
|
second_per_grid_ts: list[float],
|
|
context_len: int = 0,
|
|
seq_len: int | None = None,
|
|
audio_feature_lengths: torch.Tensor | None = None,
|
|
use_audio_in_video: bool = False,
|
|
) -> tuple[torch.Tensor, int]:
|
|
"""Get mrope input positions and delta value."""
|
|
|
|
image_token_id = hf_config.image_token_id
|
|
video_token_id = hf_config.video_token_id
|
|
vision_start_token_id = hf_config.vision_start_token_id
|
|
spatial_merge_size = hf_config.vision_config.spatial_merge_size
|
|
tokens_per_second = getattr(hf_config.vision_config, "tokens_per_second", 1.0)
|
|
|
|
input_tokens_tensor = torch.tensor(input_tokens)
|
|
vision_start_indices = torch.argwhere(
|
|
input_tokens_tensor == vision_start_token_id
|
|
).squeeze(1)
|
|
vision_tokens = input_tokens_tensor[vision_start_indices + 1]
|
|
image_nums = (vision_tokens == image_token_id).sum()
|
|
video_nums = (vision_tokens == video_token_id).sum()
|
|
llm_pos_ids_list: list = []
|
|
|
|
st = 0
|
|
remain_images, remain_videos = image_nums, video_nums
|
|
|
|
image_index, video_index = 0, 0
|
|
for _ in range(image_nums + video_nums):
|
|
video_second_per_grid_t = 0.0
|
|
if remain_images > 0:
|
|
try:
|
|
ed_image = input_tokens.index(image_token_id, st)
|
|
except ValueError:
|
|
ed_image = len(input_tokens) + 1
|
|
else:
|
|
ed_image = len(input_tokens) + 1
|
|
if remain_videos > 0:
|
|
try:
|
|
ed_video = input_tokens.index(video_token_id, st)
|
|
except ValueError:
|
|
ed_video = len(input_tokens) + 1
|
|
else:
|
|
ed_video = len(input_tokens) + 1
|
|
if ed_image < ed_video:
|
|
t, h, w = (
|
|
image_grid_thw[image_index][0],
|
|
image_grid_thw[image_index][1],
|
|
image_grid_thw[image_index][2],
|
|
)
|
|
image_index += 1
|
|
remain_images -= 1
|
|
ed = ed_image
|
|
else:
|
|
t, h, w = (
|
|
video_grid_thw[video_index][0],
|
|
video_grid_thw[video_index][1],
|
|
video_grid_thw[video_index][2],
|
|
)
|
|
video_second_per_grid_t = 1.0
|
|
if second_per_grid_ts:
|
|
video_second_per_grid_t = second_per_grid_ts[video_index]
|
|
video_index += 1
|
|
remain_videos -= 1
|
|
ed = ed_video
|
|
|
|
llm_grid_t, llm_grid_h, llm_grid_w = (
|
|
t,
|
|
h // spatial_merge_size,
|
|
w // spatial_merge_size,
|
|
)
|
|
text_len = ed - st
|
|
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
llm_pos_ids_list.append(
|
|
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
|
|
)
|
|
|
|
t_index = (
|
|
(
|
|
torch.arange(llm_grid_t)
|
|
.view(-1, 1)
|
|
.expand(-1, llm_grid_h * llm_grid_w)
|
|
* video_second_per_grid_t
|
|
* tokens_per_second
|
|
)
|
|
.long()
|
|
.flatten()
|
|
)
|
|
|
|
h_index = (
|
|
torch.arange(llm_grid_h)
|
|
.view(1, -1, 1)
|
|
.expand(llm_grid_t, -1, llm_grid_w)
|
|
.flatten()
|
|
)
|
|
w_index = (
|
|
torch.arange(llm_grid_w)
|
|
.view(1, 1, -1)
|
|
.expand(llm_grid_t, llm_grid_h, -1)
|
|
.flatten()
|
|
)
|
|
llm_pos_ids_list.append(
|
|
torch.stack([t_index, h_index, w_index]) + text_len + st_idx
|
|
)
|
|
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
|
|
|
if st < len(input_tokens):
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
text_len = len(input_tokens) - st
|
|
llm_pos_ids_list.append(
|
|
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
|
|
)
|
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
|
mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
|
|
llm_positions = llm_positions[:, context_len:seq_len]
|
|
|
|
return llm_positions, mrope_position_delta
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<|vision_start|><|image_pad|><|vision_end|>"
|
|
if modality.startswith("video"):
|
|
return "<|vision_start|><|video_pad|><|vision_end|>"
|
|
|
|
raise ValueError("Only image or video modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
|
|
self.config = config
|
|
self.vllm_config = vllm_config
|
|
self.multimodal_config = multimodal_config
|
|
self.video_pruning_rate = multimodal_config.video_pruning_rate
|
|
self.is_multimodal_pruning_enabled = (
|
|
multimodal_config.is_multimodal_pruning_enabled()
|
|
)
|
|
|
|
if multimodal_config.get_limit_per_prompt(
|
|
"image"
|
|
) or multimodal_config.get_limit_per_prompt("video"):
|
|
attn_backend_override = (
|
|
multimodal_config.mm_encoder_attn_backend
|
|
if multimodal_config is not None
|
|
else None
|
|
)
|
|
self.visual = Qwen2_5_VisionTransformer(
|
|
vision_config=config.vision_config,
|
|
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
|
|
quant_config=self.quant_config,
|
|
prefix=maybe_prefix(prefix, "visual"),
|
|
use_data_parallel=self.use_data_parallel,
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
else:
|
|
self.visual = None
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
architectures=["Qwen2ForCausalLM"],
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
|
|
self.language_model.model.aux_hidden_state_layers = layers
|
|
|
|
def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
|
|
num_layers = len(self.language_model.model.layers)
|
|
return (2, num_layers // 2, num_layers - 3)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> Qwen2_5_VLImageInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
image_grid_thw = kwargs.pop("image_grid_thw", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
return Qwen2_5_VLImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
return Qwen2_5_VLImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
image_embeds=image_embeds,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|
|
|
|
def _parse_and_validate_video_input(
|
|
self, **kwargs: object
|
|
) -> Qwen2_5_VLVideoInputs | None:
|
|
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
|
|
video_embeds = kwargs.pop("video_embeds", None)
|
|
video_grid_thw = kwargs.pop("video_grid_thw", None)
|
|
second_per_grid_ts = kwargs.pop("second_per_grid_ts", None)
|
|
|
|
if pixel_values_videos is None and video_embeds is None:
|
|
return None
|
|
|
|
if pixel_values_videos is not None:
|
|
return Qwen2_5_VLVideoPixelInputs(
|
|
type="pixel_values_videos",
|
|
pixel_values_videos=pixel_values_videos,
|
|
video_grid_thw=video_grid_thw,
|
|
second_per_grid_ts=second_per_grid_ts,
|
|
)
|
|
|
|
if video_embeds is not None:
|
|
return Qwen2_5_VLVideoEmbeddingInputs(
|
|
type="video_embeds",
|
|
video_embeds=video_embeds,
|
|
video_grid_thw=video_grid_thw,
|
|
)
|
|
|
|
def _process_image_input(
|
|
self, image_input: Qwen2_5_VLImageInputs
|
|
) -> tuple[torch.Tensor, ...]:
|
|
grid_thw = image_input["image_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
grid_thw_list = grid_thw.tolist()
|
|
|
|
if image_input["type"] == "image_embeds":
|
|
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
|
|
else:
|
|
pixel_values = image_input["pixel_values"]
|
|
with set_forward_context(None, self.vllm_config):
|
|
if self.use_data_parallel:
|
|
return run_dp_sharded_mrope_vision_model(
|
|
self.visual, pixel_values, grid_thw_list, rope_type="rope_3d"
|
|
)
|
|
else:
|
|
image_embeds = self.visual(pixel_values, grid_thw=grid_thw_list)
|
|
|
|
# Split concatenated embeddings for each image item.
|
|
# Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
|
|
merge_size = self.visual.spatial_merge_size
|
|
sizes = (
|
|
torch.tensor(grid_thw_list, dtype=torch.long).prod(-1)
|
|
// (merge_size * merge_size)
|
|
).tolist()
|
|
|
|
return image_embeds.split(sizes)
|
|
|
|
def _postprocess_image_embeds_evs(
|
|
self,
|
|
image_embeds_split: tuple[torch.Tensor, ...],
|
|
image_input: Qwen2_5_VLImageInputs,
|
|
) -> tuple[torch.Tensor, ...]:
|
|
"""
|
|
Append mrope positions for each for images.
|
|
This is necessary to recover correct mrope
|
|
positions after video pruning
|
|
|
|
Args:
|
|
image_embeds_split: Tuple of image embeddings for
|
|
each image item.
|
|
image_input: Image input data.
|
|
|
|
Returns:
|
|
Tuple of image embeddings for each image item.
|
|
Resulting embeddings will have extra 4 channels for
|
|
computed mrope positions.
|
|
"""
|
|
merge_size = self.visual.spatial_merge_size
|
|
grid_thw = image_input["image_grid_thw"]
|
|
grid_thw_list = grid_thw.tolist()
|
|
image_embeds_out = []
|
|
for emb, size in zip(image_embeds_split, grid_thw_list):
|
|
positions = compute_mrope_for_media(size, merge_size).to(emb.device)
|
|
emb = torch.cat([emb, positions], dim=1)
|
|
image_embeds_out.append(emb)
|
|
image_embeds_split = image_embeds_out
|
|
return tuple(image_embeds_split)
|
|
|
|
def _process_video_input(
|
|
self, video_input: Qwen2_5_VLVideoInputs
|
|
) -> tuple[torch.Tensor, ...]:
|
|
grid_thw = video_input["video_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
grid_thw_list = grid_thw.tolist()
|
|
|
|
if video_input["type"] == "video_embeds":
|
|
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
|
|
else:
|
|
pixel_values_videos = video_input["pixel_values_videos"]
|
|
with set_forward_context(None, self.vllm_config):
|
|
if self.use_data_parallel:
|
|
return run_dp_sharded_mrope_vision_model(
|
|
self.visual,
|
|
pixel_values_videos,
|
|
grid_thw_list,
|
|
rope_type="rope_3d",
|
|
)
|
|
else:
|
|
video_embeds = self.visual(
|
|
pixel_values_videos, grid_thw=grid_thw_list
|
|
)
|
|
|
|
# Split concatenated embeddings for each video item.
|
|
merge_size = self.visual.spatial_merge_size
|
|
# Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
|
|
sizes = (
|
|
torch.tensor(grid_thw_list, dtype=torch.long).prod(-1)
|
|
// (merge_size * merge_size)
|
|
).tolist()
|
|
|
|
return video_embeds.split(sizes)
|
|
|
|
def _postprocess_video_embeds_evs(
|
|
self,
|
|
video_embeds_split: tuple[torch.Tensor, ...],
|
|
video_input: Qwen2_5_VLVideoInputs,
|
|
) -> tuple[torch.Tensor, ...]:
|
|
"""
|
|
Prunes video embeddings via Efficient Video Sampling (EVS)
|
|
and then appends mrope positions for each retained embeddings
|
|
|
|
Args:
|
|
video_embeds_split: Tuple of video embeddings for each video item.
|
|
video_input: Video input data.
|
|
|
|
Returns:
|
|
Tuple of video embeddings for each video item.
|
|
Resulting embeddings will have extra 4 channels for
|
|
computed mrope positions.
|
|
"""
|
|
grid_thw = video_input["video_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
grid_thw_list = grid_thw.tolist()
|
|
merge_size = self.visual.spatial_merge_size
|
|
|
|
# Cast to long to match the original code
|
|
# https://github.com/huggingface/transformers/blob/41980ce93e775f6c88500c51c8db7946fc6a2add/src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py#L491 # noqa
|
|
second_per_grid_ts = video_input["second_per_grid_ts"].long()
|
|
tokens_per_second = self.config.vision_config.tokens_per_second
|
|
|
|
video_embeds_out = []
|
|
for emb, size, video_second_per_grid_t in zip(
|
|
video_embeds_split, grid_thw_list, second_per_grid_ts
|
|
):
|
|
# For each video, we compute retention mask using EVS
|
|
retention_mask = compute_retention_mask(
|
|
emb,
|
|
size,
|
|
spatial_merge_size=self.visual.spatial_merge_size,
|
|
q=self.video_pruning_rate,
|
|
)
|
|
positions = compute_mrope_for_media(
|
|
size,
|
|
merge_size,
|
|
tokens_per_second=tokens_per_second,
|
|
video_second_per_grid=video_second_per_grid_t.item(),
|
|
).to(emb.device)
|
|
|
|
emb = emb[retention_mask]
|
|
positions = positions[retention_mask]
|
|
emb = torch.cat([emb, positions], dim=1)
|
|
video_embeds_out.append(emb)
|
|
return tuple(video_embeds_out)
|
|
|
|
def recompute_mrope_positions(
|
|
self,
|
|
input_ids: list[int],
|
|
multimodal_embeddings: tuple[torch.Tensor, ...],
|
|
mrope_positions: torch.LongTensor,
|
|
num_computed_tokens: int,
|
|
) -> tuple[tuple[torch.Tensor, ...], torch.Tensor, int]:
|
|
"""
|
|
Update part of input mrope positions (starting with
|
|
num_computed_tokens index). Original mrope_positions are computed
|
|
for unpruned sequence and becomes incorrect once pruning occurs,
|
|
so once we prune media tokens we should reflect this in the
|
|
mrope_positions before we feed it to LLM.
|
|
|
|
Args:
|
|
input_ids: (N,) All input tokens of the prompt (Containing
|
|
entire sequence).
|
|
multimodal_embeddings: Tuple of multimodal embeddings.
|
|
mrope_positions: Existing mrope positions (3, N) for entire
|
|
sequence
|
|
num_computed_tokens: A number of computed tokens so far.
|
|
|
|
Returns:
|
|
Tuple of (multimodal_embeddings, mrope_positions,
|
|
mrope_position_delta).
|
|
"""
|
|
image_token_id = self.config.image_token_id
|
|
video_token_id = self.config.video_token_id
|
|
vision_start_token_id = self.config.vision_start_token_id
|
|
|
|
# Device
|
|
device = (
|
|
multimodal_embeddings[0].device
|
|
if len(multimodal_embeddings)
|
|
else mrope_positions.device
|
|
)
|
|
|
|
# Tensors
|
|
input_ids_t = torch.as_tensor(input_ids, device=device, dtype=torch.long)
|
|
|
|
mm_embeddings_out = [mm[:, :-4] for mm in multimodal_embeddings]
|
|
mm_embeddings_pos = [
|
|
mm[:, -4:].permute(1, 0).long() for mm in multimodal_embeddings
|
|
]
|
|
|
|
positions, mrope_positions_delta = recompute_mrope_positions(
|
|
input_ids_t,
|
|
mm_embeddings_pos,
|
|
mrope_positions,
|
|
num_computed_tokens,
|
|
vision_start_token_id,
|
|
image_token_id,
|
|
video_token_id,
|
|
)
|
|
|
|
return tuple(mm_embeddings_out), positions, mrope_positions_delta
|
|
|
|
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
|
|
mm_input_by_modality = {}
|
|
|
|
# Preserve the order of modalities if there are multiple of them
|
|
# from the order of kwargs.
|
|
for input_key in kwargs:
|
|
if (
|
|
input_key in ("pixel_values", "image_embeds")
|
|
and "image" not in mm_input_by_modality
|
|
):
|
|
mm_input_by_modality["image"] = self._parse_and_validate_image_input(
|
|
**kwargs
|
|
)
|
|
if (
|
|
input_key in ("pixel_values_videos", "video_embeds")
|
|
and "video" not in mm_input_by_modality
|
|
):
|
|
mm_input_by_modality["video"] = self._parse_and_validate_video_input(
|
|
**kwargs
|
|
)
|
|
return mm_input_by_modality
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
|
|
if not mm_input_by_modality:
|
|
return []
|
|
|
|
# The result multimodal_embeddings is tuple of tensors, with each
|
|
# tensor correspoending to a multimodal data item (image or video).
|
|
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
|
|
|
|
# NOTE: It is important to iterate over the keys in this dictionary
|
|
# to preserve the order of the modalities.
|
|
for modality in mm_input_by_modality:
|
|
multimodal_input = mm_input_by_modality[modality]
|
|
if modality == "image":
|
|
image_embeddings = self._process_image_input(multimodal_input)
|
|
if self.is_multimodal_pruning_enabled:
|
|
image_embeddings = self._postprocess_image_embeds_evs(
|
|
image_embeddings, multimodal_input
|
|
)
|
|
multimodal_embeddings += tuple(image_embeddings)
|
|
if modality == "video":
|
|
video_embeddings = self._process_video_input(multimodal_input)
|
|
if self.is_multimodal_pruning_enabled:
|
|
video_embeddings = self._postprocess_video_embeds_evs(
|
|
video_embeddings, multimodal_input
|
|
)
|
|
multimodal_embeddings += tuple(video_embeddings)
|
|
return multimodal_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
"""Run forward pass for Qwen2.5-VL.
|
|
|
|
Args:
|
|
input_ids: Flattened (concatenated) input_ids corresponding to a
|
|
batch.
|
|
positions: Flattened (concatenated) position ids corresponding to a
|
|
batch. **NOTE**: If mrope is enabled (default setting for
|
|
Qwen2.5-VL opensource models), the shape will be `(3, seq_len)`,
|
|
otherwise it will be `(seq_len,).
|
|
"""
|
|
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
skip_prefixes = []
|
|
if self.visual is None:
|
|
skip_prefixes.extend(["visual."])
|
|
loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="language_model",
|
|
connector="visual.merger.",
|
|
tower_model="visual.",
|
|
)
|