vllm/vllm/model_executor/models/qwen2_5_vl.py
Lucas Kabela 94666612a9
[Misc][qwen2_5_vl][torch.compile] Enable supports_torch_compile on generic nn.Module and demonstrate speedup on Qwen Vision model (#23207)
Signed-off-by: Lucas Kabela <lucaskabela@meta.com>
Signed-off-by: Lucas Kabela <lucasakabela@gmail.com>
2025-10-28 22:36:43 +00:00

1649 lines
58 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py
# Copyright 2025 The vLLM team.
# Copyright 2025 The Qwen Team.
# Copyright 2025 The HuggingFace Inc. team.
# All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2.5-VL model compatible with HuggingFace weights."""
import math
from collections.abc import Callable, Iterable, Mapping, Sequence
from functools import lru_cache, partial
from typing import Annotated, Any, Literal, TypeAlias
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BatchFeature, PretrainedConfig
from transformers.models.qwen2_5_vl import Qwen2_5_VLProcessor
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
Qwen2_5_VLConfig,
Qwen2_5_VLVisionConfig,
)
from vllm.attention.backends.registry import _Backend
from vllm.attention.layer import (
check_upstream_fa_availability,
maybe_get_vit_flash_attn_backend,
)
from vllm.attention.ops.vit_attn_wrappers import (
vit_flash_attn_wrapper,
vit_xformers_attn_wrapper,
)
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed import parallel_state
from vllm.distributed import utils as dist_utils
from vllm.forward_context import set_forward_context
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import get_act_and_mul_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.evs import (
compute_mrope_for_media,
compute_retained_tokens_count,
compute_retention_mask,
recompute_mrope_positions,
)
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import PromptReplacement, PromptUpdate
from vllm.sequence import IntermediateTensors
from vllm.utils.platform_utils import is_pin_memory_available
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import (
MultiModalEmbeddings,
SupportsEagle3,
SupportsLoRA,
SupportsMRoPE,
SupportsMultiModal,
SupportsMultiModalPruning,
SupportsPP,
SupportsQuant,
)
from .qwen2_vl import Qwen2VLDummyInputsBuilder as Qwen2_5_VLDummyInputsBuilder
from .qwen2_vl import (
Qwen2VLMultiModalProcessor,
Qwen2VLProcessingInfo,
apply_rotary_pos_emb_vision,
)
from .utils import (
AutoWeightsLoader,
WeightsMapper,
cast_overflow_tensors,
init_vllm_registered_model,
maybe_prefix,
)
from .vision import (
conv3d_to_linear_weight,
get_vit_attn_backend,
run_dp_sharded_mrope_vision_model,
)
logger = init_logger(__name__)
# === Vision Inputs === #
class Qwen2_5_VLImagePixelInputs(TensorSchema):
"""
Dimensions:
- np: Number of patches
- ni: Number of images
- cps: Number of channels * patch_size * patch_size
Historical context:
- pixel_values shape: (num_patches, num_channels * patch_size *
patch_size)
- image_grid_thw shape: (num_images, 3) in (grid_t, grid_h, grid_w)
format.
"""
type: Literal["pixel_values"]
pixel_values: Annotated[
torch.Tensor,
TensorShape("np", "cps"),
]
image_grid_thw: Annotated[
torch.Tensor,
TensorShape("ni", 3),
]
class Qwen2_5_VLImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- nf: Number of image features
- hs: Hidden size
- ni: Number of images
Historical context:
- image_embeds shape: (num_image_features, hidden_size)
- num_image_features varies based on the number and resolution of the
images.
- hidden_size must match the hidden size of language model backbone.
- image_grid_thw shape: (num_images, 3) in (grid_t, grid_h, grid_w)
format
"""
type: Literal["image_embeds"]
image_embeds: Annotated[
torch.Tensor,
TensorShape("nf", "hs"),
]
image_grid_thw: Annotated[
torch.Tensor,
TensorShape("ni", 3),
]
Qwen2_5_VLImageInputs: TypeAlias = (
Qwen2_5_VLImagePixelInputs | Qwen2_5_VLImageEmbeddingInputs
)
class Qwen2_5_VLVideoPixelInputs(TensorSchema):
"""
Dimensions:
- np: Number of patches
- nv: Number of videos
- ctps: Number of channels * temporal_patch_size * patch_size *
patch_size
Historical context:
- pixel_values_videos shape: (num_patches, num_channels *
temporal_patch_size * patch_size * patch_size)
- video_grid_thw shape: (num_videos, 3) in (grid_t, grid_h, grid_w)
format
- second_per_grid_ts: The video time interval (in seconds) for each
grid along the temporal dimension in the 3D position IDs. Returned
when `videos` is not `None`.
"""
type: Literal["pixel_values_videos"]
pixel_values_videos: Annotated[
torch.Tensor,
TensorShape("np", "ctps"),
]
video_grid_thw: Annotated[
torch.Tensor,
TensorShape("nv", 3),
]
second_per_grid_ts: Annotated[
torch.Tensor | None,
TensorShape("nv"),
]
class Qwen2_5_VLVideoEmbeddingInputs(TensorSchema):
"""
Dimensions:
- nf: Number of video features
- hs: Hidden size
- nv: Number of videos
Historical context:
- video_embeds shape: (num_video_features, hidden_size)
- num_video_features varies based on the number and resolution of the
videos.
- hidden_size must match the hidden size of language model backbone.
- video_grid_thw shape: (num_videos, 3) in (grid_t, grid_h, grid_w)
format
"""
type: Literal["video_embeds"]
video_embeds: Annotated[
torch.Tensor,
TensorShape("nf", "hs"),
]
video_grid_thw: Annotated[
torch.Tensor,
TensorShape("nv", 3),
]
Qwen2_5_VLVideoInputs: TypeAlias = (
Qwen2_5_VLVideoPixelInputs | Qwen2_5_VLVideoEmbeddingInputs
)
# === Vision Encoder === #
class Qwen2_5_VisionMLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
bias: bool = False,
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
):
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=in_features,
output_sizes=[hidden_features] * 2, # [gate_proj, up_proj]
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
disable_tp=use_data_parallel,
)
self.down_proj = RowParallelLinear(
hidden_features,
in_features,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
disable_tp=use_data_parallel,
)
self.act_fn = act_fn
def forward(self, x: torch.Tensor):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x_down, _ = self.down_proj(x)
return x_down
def all_gather_interleave(local_tensor, hidden_size: int, tp_size: int):
"""All-gather the input tensor interleavely across model parallel group."""
import torch.distributed as dist
gathered_tensors = [torch.zeros_like(local_tensor) for _ in range(tp_size)]
dist.all_gather(
gathered_tensors, local_tensor, group=parallel_state.get_tp_group().device_group
)
gathered_tensors_split = [
torch.split(tensor, hidden_size // tp_size, -1) for tensor in gathered_tensors
]
ordered_tensors = [
tensor for pair in zip(*gathered_tensors_split) for tensor in pair
]
result_tensor = torch.cat(ordered_tensors, dim=-1)
return result_tensor
class Qwen2_5_VisionAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
projection_size: int,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend: _Backend = _Backend.TORCH_SDPA,
use_upstream_fa: bool = False,
) -> None:
super().__init__()
# Per attention head and per partition values.
self.tp_size = (
1
if use_data_parallel
else parallel_state.get_tensor_model_parallel_world_size()
)
self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
self.hidden_size_per_attention_head = dist_utils.divide(
projection_size, num_heads
)
self.num_attention_heads_per_partition = dist_utils.divide(
num_heads, self.tp_size
)
self.qkv = QKVParallelLinear(
hidden_size=embed_dim,
head_size=self.hidden_size_per_attention_head,
total_num_heads=num_heads,
total_num_kv_heads=num_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv",
disable_tp=use_data_parallel,
)
self.proj = RowParallelLinear(
input_size=projection_size,
output_size=embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.proj",
disable_tp=use_data_parallel,
)
self.attn_backend = attn_backend
self.use_upstream_fa = use_upstream_fa
self.attn_backend, self.flash_attn_varlen_func = (
maybe_get_vit_flash_attn_backend(
self.attn_backend,
self.use_upstream_fa,
)
)
self.is_flash_attn_backend = self.attn_backend in {
_Backend.FLASH_ATTN,
_Backend.ROCM_AITER_FA,
}
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
# [s, b, 3 * head * head_dim]
seq_len, bs, _ = qkv.shape
if self.tp_size > 1:
qkv = all_gather_interleave(qkv, self.qkv.hidden_size, self.tp_size)
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
q, k, v = qkv.chunk(3, dim=2)
# 3 * [s, b, head * head_dim]
if self.tp_size > 1:
splitter = partial(
dist_utils.split_tensor_along_last_dim, num_partitions=self.tp_size
)
q = splitter(q)[self.tp_rank]
k = splitter(k)[self.tp_rank]
v = splitter(v)[self.tp_rank]
# 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
new_shape = (
seq_len,
bs,
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
q, k, v = (x.view(*new_shape) for x in (q, k, v))
return q, k, v
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor,
max_seqlen: torch.Tensor, # Only used for Flash Attention
seqlens: torch.Tensor, # Only used for xFormers
) -> torch.Tensor:
# [s, b, c] --> [s, b, head * 3 * head_dim]
x, _ = self.qkv(x)
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
q, k, v = self.split_qkv(x)
batch_size = q.shape[1]
q, k, v = (einops.rearrange(x, "s b ... -> b s ...") for x in (q, k, v))
if rotary_pos_emb is not None:
# [2 * b, s, heads, head_dim]
qk_concat = torch.cat([q, k], dim=0)
qk_rotated = apply_rotary_pos_emb_vision(qk_concat, rotary_pos_emb)
q, k = torch.chunk(qk_rotated, 2, dim=0)
if self.is_flash_attn_backend:
context_layer = vit_flash_attn_wrapper(
q,
k,
v,
cu_seqlens,
max_seqlen,
batch_size,
self.attn_backend == _Backend.ROCM_AITER_FA,
self.use_upstream_fa,
)
elif self.attn_backend == _Backend.TORCH_SDPA:
# Execute attention entry by entry for speed & less VRAM.
outputs = []
for i in range(1, len(cu_seqlens)):
start_idx = cu_seqlens[i - 1]
end_idx = cu_seqlens[i]
q_i = q[:, start_idx:end_idx]
k_i = k[:, start_idx:end_idx]
v_i = v[:, start_idx:end_idx]
q_i, k_i, v_i = (
einops.rearrange(x, "b s h d -> b h s d") for x in [q_i, k_i, v_i]
)
output_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
output_i = einops.rearrange(output_i, "b h s d -> b s h d ")
outputs.append(output_i)
context_layer = torch.cat(outputs, dim=1)
context_layer = einops.rearrange(
context_layer, "b s h d -> s b (h d)"
).contiguous()
elif self.attn_backend == _Backend.XFORMERS:
context_layer = vit_xformers_attn_wrapper(q, k, v, seqlens)
output, _ = self.proj(context_layer)
return output
@support_torch_compile(
dynamic_arg_dims={
"x": 0,
"cu_seqlens": 0,
"rotary_pos_emb": 0,
"seqlens": 0,
},
mark_unbacked_dims={"seqlens": 0},
)
class Qwen2_5_VisionBlock(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_hidden_dim: int,
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
norm_layer: Callable[[int], nn.Module] | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend: _Backend = _Backend.TORCH_SDPA,
use_upstream_fa: bool = False,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.norm1 = norm_layer(dim)
self.norm2 = norm_layer(dim)
self.attn = Qwen2_5_VisionAttention(
embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
quant_config=quant_config,
prefix=f"{prefix}.attn",
use_data_parallel=use_data_parallel,
attn_backend=attn_backend,
use_upstream_fa=use_upstream_fa,
)
self.mlp = Qwen2_5_VisionMLP(
dim,
mlp_hidden_dim,
act_fn=act_fn,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
use_data_parallel=use_data_parallel,
)
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: torch.Tensor,
max_seqlen: torch.Tensor, # Only used for Flash Attention
seqlens: torch.Tensor, # Only used for xFormers
) -> torch.Tensor:
x_attn = self.attn(
self.norm1(x),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
max_seqlen=max_seqlen,
seqlens=seqlens,
)
x_fused_norm, residual = self.norm2(x, residual=x_attn)
x = residual + self.mlp(x_fused_norm)
return x
@support_torch_compile(
dynamic_arg_dims={
"x": 0,
}
)
class Qwen2_5_VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_channels: int = 3,
hidden_size: int = 1152,
) -> None:
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.hidden_size = hidden_size
kernel_size = (temporal_patch_size, patch_size, patch_size)
self.proj = ReplicatedLinear(
in_channels * math.prod(kernel_size),
hidden_size,
bias=False,
return_bias=False,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
return x
@support_torch_compile(
dynamic_arg_dims={
"x": 0,
}
)
class Qwen2_5_VisionPatchMerger(nn.Module):
def __init__(
self,
d_model: int,
context_dim: int,
norm_layer: Callable[[int], nn.Module] | None = None,
spatial_merge_size: int = 2,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.ln_q = norm_layer(context_dim)
self.mlp = nn.Sequential(
ColumnParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.mlp.0",
return_bias=False,
disable_tp=use_data_parallel,
),
nn.GELU(),
RowParallelLinear(
self.hidden_size,
d_model,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.mlp.2",
return_bias=False,
disable_tp=use_data_parallel,
),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x)
x = x.view(-1, self.hidden_size)
out = self.mlp(x)
return out
class Qwen2_5_VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
self.dim = dim
self.theta = theta
inv_freq = 1.0 / (
theta ** (torch.arange(0, dim, 2, dtype=torch.float, device="cpu") / dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._seq_len_cached = 0
self._freqs_cached = None
def update_freqs_cache(self, seqlen: int) -> None:
if seqlen > self._seq_len_cached:
seqlen *= 2
self._seq_len_cached = seqlen
self.inv_freq = 1.0 / (
self.theta
** (
torch.arange(
0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device
)
/ self.dim
)
)
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
self._freqs_cached = freqs
def forward(self, seqlen: int) -> torch.Tensor:
self.update_freqs_cache(seqlen)
return self._freqs_cached[:seqlen]
class Qwen2_5_VisionTransformer(nn.Module):
def __init__(
self,
vision_config: Qwen2_5_VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: _Backend | None = None,
) -> None:
super().__init__()
patch_size = vision_config.patch_size
temporal_patch_size = vision_config.temporal_patch_size
in_channels = vision_config.in_channels
depth = vision_config.depth
self.hidden_size = vision_config.hidden_size
self.num_heads = vision_config.num_heads
self.use_data_parallel = use_data_parallel
self.out_hidden_size = vision_config.out_hidden_size
# args for get_window_index_thw
self.window_size = vision_config.window_size
self.patch_size = vision_config.patch_size
self.spatial_merge_size = vision_config.spatial_merge_size
self.fullatt_block_indexes = vision_config.fullatt_block_indexes
self.spatial_merge_unit = self.spatial_merge_size**2
# TODO[@lucaskabela]: Investigate fixing this usage
# see https://github.com/vllm-project/vllm/issues/27044
# DO NOT MOVE THIS IMPORT
from vllm.compilation.backends import set_model_tag
with set_model_tag("Qwen2_5_VisionPatchEmbed"):
self.patch_embed = Qwen2_5_VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_channels=in_channels,
hidden_size=self.hidden_size,
)
norm_layer = partial(RMSNorm, eps=norm_eps)
head_dim = self.hidden_size // self.num_heads
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
use_upstream_fa = False
self.attn_backend = get_vit_attn_backend(
head_size=head_dim,
dtype=torch.get_default_dtype(),
attn_backend_override=attn_backend_override,
)
if (
self.attn_backend != _Backend.FLASH_ATTN
and self.attn_backend != _Backend.ROCM_AITER_FA
and check_upstream_fa_availability(torch.get_default_dtype())
):
self.attn_backend = _Backend.FLASH_ATTN
use_upstream_fa = True
if self.attn_backend not in {
_Backend.FLASH_ATTN,
_Backend.TORCH_SDPA,
_Backend.XFORMERS,
_Backend.ROCM_AITER_FA,
}:
raise RuntimeError(
f"Qwen2.5-VL does not support {self.attn_backend} backend now."
)
with set_model_tag("Qwen2_5_VisionBlock"):
self.blocks = nn.ModuleList(
[
Qwen2_5_VisionBlock(
dim=self.hidden_size,
num_heads=self.num_heads,
mlp_hidden_dim=vision_config.intermediate_size,
act_fn=get_act_and_mul_fn(vision_config.hidden_act),
norm_layer=norm_layer,
quant_config=quant_config,
prefix=f"{prefix}.blocks.{layer_idx}",
use_data_parallel=use_data_parallel,
attn_backend=self.attn_backend,
use_upstream_fa=use_upstream_fa,
)
for layer_idx in range(depth)
]
)
with set_model_tag("Qwen2_5_VisionPatchMerger"):
self.merger = Qwen2_5_VisionPatchMerger(
d_model=vision_config.out_hidden_size,
context_dim=self.hidden_size,
norm_layer=norm_layer,
spatial_merge_size=self.spatial_merge_size,
quant_config=quant_config,
prefix=f"{prefix}.merger",
use_data_parallel=use_data_parallel,
)
@property
def dtype(self) -> torch.dtype:
return self.patch_embed.proj.weight.dtype
@property
def device(self) -> torch.device:
return self.patch_embed.proj.weight.device
def rotary_pos_emb_thw(self, t, h, w):
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
hpos_ids = (
hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
.permute(0, 2, 1, 3)
.flatten()
)
wpos_ids = (
wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
.permute(0, 2, 1, 3)
.flatten()
)
pos_ids = torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
max_size = max(h, w)
rotary_pos_emb_full = self.rotary_pos_emb(max_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
rotary_pos_emb = rotary_pos_emb.reshape(
rotary_pos_emb.shape[0] // self.spatial_merge_unit,
self.spatial_merge_unit,
-1,
)
return rotary_pos_emb
def get_window_index_thw(self, grid_t, grid_h, grid_w):
vit_merger_window_size = (
self.window_size // self.spatial_merge_size // self.patch_size
)
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
grid_t, llm_grid_h, llm_grid_w
)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit
cu_seqlens_tmp = cu_seqlens_tmp.to(dtype=torch.int32)
cu_seqlens_tmp = torch.unique_consecutive(cu_seqlens_tmp)
return index_new, cu_seqlens_tmp
@lru_cache(maxsize=1024) # noqa: B019
def get_rope_by_thw(self, t, h, w):
window_index_thw, cu_seqlens_window_thw = self.get_window_index_thw(t, h, w)
rotary_pos_emb_thw = self.rotary_pos_emb_thw(t, h, w)
rotary_pos_emb_thw = rotary_pos_emb_thw[window_index_thw, :, :]
rotary_pos_emb_thw = rotary_pos_emb_thw.flatten(start_dim=0, end_dim=1)
cu_seqlens_thw = torch.repeat_interleave(
torch.tensor([h * w], dtype=torch.int32), t
)
return (
rotary_pos_emb_thw,
window_index_thw,
cu_seqlens_window_thw,
cu_seqlens_thw,
)
def compute_attn_mask_seqlen(
self,
cu_seqlens: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
max_seqlen, seqlens = (
torch.zeros(1, device=cu_seqlens.device),
torch.zeros(1, device=cu_seqlens.device),
)
if (
self.attn_backend == _Backend.FLASH_ATTN
or self.attn_backend == _Backend.ROCM_AITER_FA
):
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
elif self.attn_backend == _Backend.XFORMERS:
seqlens = cu_seqlens[1:] - cu_seqlens[:-1]
return max_seqlen, seqlens
@staticmethod
def invert_permutation(perm: torch.Tensor) -> torch.Tensor:
# building the inverse permutation in O(n) time
inv = torch.empty_like(perm, pin_memory=is_pin_memory_available())
inv[perm] = torch.arange(perm.numel(), device=perm.device, dtype=perm.dtype)
return inv
def forward(
self,
x: torch.Tensor,
grid_thw: list[list[int]],
) -> torch.Tensor:
# patchify
seq_len, _ = x.size()
rotary_pos_emb = []
window_index: list = []
cu_window_seqlens: list = [torch.tensor([0], dtype=torch.int32)]
cu_seqlens: list = []
hidden_states = x.to(device=self.device, dtype=self.dtype)
hidden_states = self.patch_embed(hidden_states)
window_index_id = 0
cu_window_seqlens_last = 0
for t, h, w in grid_thw:
t, h, w = int(t), int(h), int(w)
llm_h = h // self.spatial_merge_size
llm_w = w // self.spatial_merge_size
(
rotary_pos_emb_thw,
window_index_thw,
cu_seqlens_window_thw,
cu_seqlens_thw,
) = self.get_rope_by_thw(t, h, w)
window_index.append(window_index_thw + window_index_id)
window_index_id += t * llm_h * llm_w
cu_seqlens_window_thw = cu_seqlens_window_thw + cu_window_seqlens_last
cu_window_seqlens_last = cu_seqlens_window_thw[-1]
cu_window_seqlens.append(cu_seqlens_window_thw)
rotary_pos_emb.append(rotary_pos_emb_thw)
cu_seqlens.append(cu_seqlens_thw)
rotary_pos_emb = torch.cat(rotary_pos_emb)
window_index = torch.cat(window_index)
# compute reverse indices
reverse_indices = self.invert_permutation(window_index)
cu_window_seqlens = torch.cat(cu_window_seqlens)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
cu_seqlens = torch.cat(cu_seqlens)
cu_seqlens = torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32)
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
# transformers
# pre-compute seqlens for window/full attn to reduce cuMemcpy operations
max_seqlen_full, seqlens_full = self.compute_attn_mask_seqlen(cu_seqlens)
max_seqlen_window, seqlens_window = self.compute_attn_mask_seqlen(
cu_window_seqlens
)
cu_seqlens = cu_seqlens.to(device=self.device, non_blocking=True)
cu_window_seqlens = cu_window_seqlens.to(device=self.device, non_blocking=True)
rotary_pos_emb = rotary_pos_emb.to(device=self.device, non_blocking=True)
window_index = window_index.to(device=hidden_states.device, non_blocking=True)
reverse_indices = reverse_indices.to(
device=hidden_states.device, non_blocking=True
)
hidden_states = hidden_states.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
hidden_states = hidden_states.unsqueeze(1)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
max_seqlen_now = max_seqlen_full
seqlens_now = seqlens_full
else:
cu_seqlens_now = cu_window_seqlens
max_seqlen_now = max_seqlen_window
seqlens_now = seqlens_window
hidden_states = blk(
hidden_states,
cu_seqlens=cu_seqlens_now,
rotary_pos_emb=rotary_pos_emb,
max_seqlen=max_seqlen_now,
seqlens=seqlens_now,
)
# For Qwen2.5-VL-3B, float16 will overflow at last block
# for long visual tokens sequences.
if hidden_states.dtype == torch.float16:
hidden_states = cast_overflow_tensors(hidden_states)
# adapter
hidden_states = self.merger(hidden_states)
hidden_states = hidden_states[reverse_indices, :]
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("attn.qkv.", "attn.q.", "q"),
("attn.qkv.", "attn.k.", "k"),
("attn.qkv.", "attn.v.", "v"),
("mlp.gate_up_proj.", "mlp.gate_proj.", 0),
("mlp.gate_up_proj.", "mlp.up_proj.", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if name.endswith("patch_embed.proj.weight"):
loaded_weight = conv3d_to_linear_weight(loaded_weight)
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Qwen2_5_VLProcessingInfo(Qwen2VLProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(Qwen2_5_VLConfig)
def get_hf_processor(self, **kwargs: object) -> Qwen2_5_VLProcessor:
return self.ctx.get_hf_processor(
Qwen2_5_VLProcessor,
use_fast=kwargs.pop("use_fast", True),
**kwargs,
)
class Qwen2_5_VLMultiModalProcessor(Qwen2VLMultiModalProcessor):
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
**super()._get_mm_fields_config(hf_inputs, hf_processor_mm_kwargs),
second_per_grid_ts=MultiModalFieldConfig.batched("video"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, Any],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
tokenizer = self.info.get_tokenizer()
vocab = tokenizer.get_vocab()
placeholder = {
"image": vocab[hf_processor.image_token],
"video": vocab[hf_processor.video_token],
}
merge_length = image_processor.merge_size**2
def get_replacement_qwen2vl(item_idx: int, modality: str):
out_item = out_mm_kwargs[modality][item_idx]
grid_thw = out_item[f"{modality}_grid_thw"].data
assert isinstance(grid_thw, torch.Tensor)
num_tokens = int(grid_thw.prod()) // merge_length
# EVS-specific code
video_pruning_rate = self.info.ctx.get_mm_config().video_pruning_rate
if (
modality == "video"
and video_pruning_rate is not None
and video_pruning_rate > 0.0
):
T, H, W = map(int, grid_thw)
tokens_per_frame = (H // image_processor.merge_size) * (
W // image_processor.merge_size
)
num_tokens = compute_retained_tokens_count(
tokens_per_frame,
T,
video_pruning_rate,
)
# End of EVS-specific code
return [placeholder[modality]] * num_tokens
return [
PromptReplacement(
modality=modality,
target=[placeholder[modality]],
replacement=partial(get_replacement_qwen2vl, modality=modality),
)
for modality in ("image", "video")
]
@MULTIMODAL_REGISTRY.register_processor(
Qwen2_5_VLMultiModalProcessor,
info=Qwen2_5_VLProcessingInfo,
dummy_inputs=Qwen2_5_VLDummyInputsBuilder,
)
class Qwen2_5_VLForConditionalGeneration(
nn.Module,
SupportsMultiModal,
SupportsLoRA,
SupportsPP,
SupportsQuant,
SupportsEagle3,
SupportsMultiModalPruning,
SupportsMRoPE,
):
merge_by_field_config = True
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
# To ensure correct weight loading and mapping.
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
# mapping for new names in checkpoint saved after transformers v4.52
"model.language_model.": "language_model.model.",
"model.visual.": "visual.",
# mapping for original checkpoint
"lm_head.": "language_model.lm_head.",
"model.": "language_model.model.",
}
)
supports_encoder_tp_data = True
def get_mrope_input_positions(
self,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: list[list[int]] | torch.Tensor,
video_grid_thw: list[list[int]] | torch.Tensor,
second_per_grid_ts: list[float],
context_len: int = 0,
seq_len: int | None = None,
audio_feature_lengths: torch.Tensor | None = None,
use_audio_in_video: bool = False,
) -> tuple[torch.Tensor, int]:
"""Get mrope input positions and delta value."""
image_token_id = hf_config.image_token_id
video_token_id = hf_config.video_token_id
vision_start_token_id = hf_config.vision_start_token_id
spatial_merge_size = hf_config.vision_config.spatial_merge_size
tokens_per_second = getattr(hf_config.vision_config, "tokens_per_second", 1.0)
input_tokens_tensor = torch.tensor(input_tokens)
vision_start_indices = torch.argwhere(
input_tokens_tensor == vision_start_token_id
).squeeze(1)
vision_tokens = input_tokens_tensor[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
image_index, video_index = 0, 0
for _ in range(image_nums + video_nums):
video_second_per_grid_t = 0.0
if remain_images > 0:
try:
ed_image = input_tokens.index(image_token_id, st)
except ValueError:
ed_image = len(input_tokens) + 1
else:
ed_image = len(input_tokens) + 1
if remain_videos > 0:
try:
ed_video = input_tokens.index(video_token_id, st)
except ValueError:
ed_video = len(input_tokens) + 1
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
video_second_per_grid_t = 1.0
if second_per_grid_ts:
video_second_per_grid_t = second_per_grid_ts[video_index]
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t,
h // spatial_merge_size,
w // spatial_merge_size,
)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
)
t_index = (
(
torch.arange(llm_grid_t)
.view(-1, 1)
.expand(-1, llm_grid_h * llm_grid_w)
* video_second_per_grid_t
* tokens_per_second
)
.long()
.flatten()
)
h_index = (
torch.arange(llm_grid_h)
.view(1, -1, 1)
.expand(llm_grid_t, -1, llm_grid_w)
.flatten()
)
w_index = (
torch.arange(llm_grid_w)
.view(1, 1, -1)
.expand(llm_grid_t, llm_grid_h, -1)
.flatten()
)
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + text_len + st_idx
)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx
)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
mrope_position_delta = (llm_positions.max() + 1 - len(input_tokens)).item()
llm_positions = llm_positions[:, context_len:seq_len]
return llm_positions, mrope_position_delta
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return "<|vision_start|><|image_pad|><|vision_end|>"
if modality.startswith("video"):
return "<|vision_start|><|video_pad|><|vision_end|>"
raise ValueError("Only image or video modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
multimodal_config = vllm_config.model_config.multimodal_config
self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
self.config = config
self.vllm_config = vllm_config
self.multimodal_config = multimodal_config
self.video_pruning_rate = multimodal_config.video_pruning_rate
self.is_multimodal_pruning_enabled = (
multimodal_config.is_multimodal_pruning_enabled()
)
if multimodal_config.get_limit_per_prompt(
"image"
) or multimodal_config.get_limit_per_prompt("video"):
attn_backend_override = (
multimodal_config.mm_encoder_attn_backend
if multimodal_config is not None
else None
)
self.visual = Qwen2_5_VisionTransformer(
vision_config=config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "visual"),
use_data_parallel=self.use_data_parallel,
attn_backend_override=attn_backend_override,
)
else:
self.visual = None
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "language_model"),
architectures=["Qwen2ForCausalLM"],
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors
)
def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
self.language_model.model.aux_hidden_state_layers = layers
def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
num_layers = len(self.language_model.model.layers)
return (2, num_layers // 2, num_layers - 3)
def _parse_and_validate_image_input(
self, **kwargs: object
) -> Qwen2_5_VLImageInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
image_grid_thw = kwargs.pop("image_grid_thw", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
return Qwen2_5_VLImagePixelInputs(
type="pixel_values",
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
)
if image_embeds is not None:
return Qwen2_5_VLImageEmbeddingInputs(
type="image_embeds",
image_embeds=image_embeds,
image_grid_thw=image_grid_thw,
)
def _parse_and_validate_video_input(
self, **kwargs: object
) -> Qwen2_5_VLVideoInputs | None:
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
video_embeds = kwargs.pop("video_embeds", None)
video_grid_thw = kwargs.pop("video_grid_thw", None)
second_per_grid_ts = kwargs.pop("second_per_grid_ts", None)
if pixel_values_videos is None and video_embeds is None:
return None
if pixel_values_videos is not None:
return Qwen2_5_VLVideoPixelInputs(
type="pixel_values_videos",
pixel_values_videos=pixel_values_videos,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
)
if video_embeds is not None:
return Qwen2_5_VLVideoEmbeddingInputs(
type="video_embeds",
video_embeds=video_embeds,
video_grid_thw=video_grid_thw,
)
def _process_image_input(
self, image_input: Qwen2_5_VLImageInputs
) -> tuple[torch.Tensor, ...]:
grid_thw = image_input["image_grid_thw"]
assert grid_thw.ndim == 2
grid_thw_list = grid_thw.tolist()
if image_input["type"] == "image_embeds":
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
else:
pixel_values = image_input["pixel_values"]
with set_forward_context(None, self.vllm_config):
if self.use_data_parallel:
return run_dp_sharded_mrope_vision_model(
self.visual, pixel_values, grid_thw_list, rope_type="rope_3d"
)
else:
image_embeds = self.visual(pixel_values, grid_thw=grid_thw_list)
# Split concatenated embeddings for each image item.
# Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
merge_size = self.visual.spatial_merge_size
sizes = (
torch.tensor(grid_thw_list, dtype=torch.long).prod(-1)
// (merge_size * merge_size)
).tolist()
return image_embeds.split(sizes)
def _postprocess_image_embeds_evs(
self,
image_embeds_split: tuple[torch.Tensor, ...],
image_input: Qwen2_5_VLImageInputs,
) -> tuple[torch.Tensor, ...]:
"""
Append mrope positions for each for images.
This is necessary to recover correct mrope
positions after video pruning
Args:
image_embeds_split: Tuple of image embeddings for
each image item.
image_input: Image input data.
Returns:
Tuple of image embeddings for each image item.
Resulting embeddings will have extra 4 channels for
computed mrope positions.
"""
merge_size = self.visual.spatial_merge_size
grid_thw = image_input["image_grid_thw"]
grid_thw_list = grid_thw.tolist()
image_embeds_out = []
for emb, size in zip(image_embeds_split, grid_thw_list):
positions = compute_mrope_for_media(size, merge_size).to(emb.device)
emb = torch.cat([emb, positions], dim=1)
image_embeds_out.append(emb)
image_embeds_split = image_embeds_out
return tuple(image_embeds_split)
def _process_video_input(
self, video_input: Qwen2_5_VLVideoInputs
) -> tuple[torch.Tensor, ...]:
grid_thw = video_input["video_grid_thw"]
assert grid_thw.ndim == 2
grid_thw_list = grid_thw.tolist()
if video_input["type"] == "video_embeds":
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
else:
pixel_values_videos = video_input["pixel_values_videos"]
with set_forward_context(None, self.vllm_config):
if self.use_data_parallel:
return run_dp_sharded_mrope_vision_model(
self.visual,
pixel_values_videos,
grid_thw_list,
rope_type="rope_3d",
)
else:
video_embeds = self.visual(
pixel_values_videos, grid_thw=grid_thw_list
)
# Split concatenated embeddings for each video item.
merge_size = self.visual.spatial_merge_size
# Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
sizes = (
torch.tensor(grid_thw_list, dtype=torch.long).prod(-1)
// (merge_size * merge_size)
).tolist()
return video_embeds.split(sizes)
def _postprocess_video_embeds_evs(
self,
video_embeds_split: tuple[torch.Tensor, ...],
video_input: Qwen2_5_VLVideoInputs,
) -> tuple[torch.Tensor, ...]:
"""
Prunes video embeddings via Efficient Video Sampling (EVS)
and then appends mrope positions for each retained embeddings
Args:
video_embeds_split: Tuple of video embeddings for each video item.
video_input: Video input data.
Returns:
Tuple of video embeddings for each video item.
Resulting embeddings will have extra 4 channels for
computed mrope positions.
"""
grid_thw = video_input["video_grid_thw"]
assert grid_thw.ndim == 2
grid_thw_list = grid_thw.tolist()
merge_size = self.visual.spatial_merge_size
# Cast to long to match the original code
# https://github.com/huggingface/transformers/blob/41980ce93e775f6c88500c51c8db7946fc6a2add/src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py#L491 # noqa
second_per_grid_ts = video_input["second_per_grid_ts"].long()
tokens_per_second = self.config.vision_config.tokens_per_second
video_embeds_out = []
for emb, size, video_second_per_grid_t in zip(
video_embeds_split, grid_thw_list, second_per_grid_ts
):
# For each video, we compute retention mask using EVS
retention_mask = compute_retention_mask(
emb,
size,
spatial_merge_size=self.visual.spatial_merge_size,
q=self.video_pruning_rate,
)
positions = compute_mrope_for_media(
size,
merge_size,
tokens_per_second=tokens_per_second,
video_second_per_grid=video_second_per_grid_t.item(),
).to(emb.device)
emb = emb[retention_mask]
positions = positions[retention_mask]
emb = torch.cat([emb, positions], dim=1)
video_embeds_out.append(emb)
return tuple(video_embeds_out)
def recompute_mrope_positions(
self,
input_ids: list[int],
multimodal_embeddings: tuple[torch.Tensor, ...],
mrope_positions: torch.LongTensor,
num_computed_tokens: int,
) -> tuple[tuple[torch.Tensor, ...], torch.Tensor, int]:
"""
Update part of input mrope positions (starting with
num_computed_tokens index). Original mrope_positions are computed
for unpruned sequence and becomes incorrect once pruning occurs,
so once we prune media tokens we should reflect this in the
mrope_positions before we feed it to LLM.
Args:
input_ids: (N,) All input tokens of the prompt (Containing
entire sequence).
multimodal_embeddings: Tuple of multimodal embeddings.
mrope_positions: Existing mrope positions (3, N) for entire
sequence
num_computed_tokens: A number of computed tokens so far.
Returns:
Tuple of (multimodal_embeddings, mrope_positions,
mrope_position_delta).
"""
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
# Device
device = (
multimodal_embeddings[0].device
if len(multimodal_embeddings)
else mrope_positions.device
)
# Tensors
input_ids_t = torch.as_tensor(input_ids, device=device, dtype=torch.long)
mm_embeddings_out = [mm[:, :-4] for mm in multimodal_embeddings]
mm_embeddings_pos = [
mm[:, -4:].permute(1, 0).long() for mm in multimodal_embeddings
]
positions, mrope_positions_delta = recompute_mrope_positions(
input_ids_t,
mm_embeddings_pos,
mrope_positions,
num_computed_tokens,
vision_start_token_id,
image_token_id,
video_token_id,
)
return tuple(mm_embeddings_out), positions, mrope_positions_delta
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
mm_input_by_modality = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if (
input_key in ("pixel_values", "image_embeds")
and "image" not in mm_input_by_modality
):
mm_input_by_modality["image"] = self._parse_and_validate_image_input(
**kwargs
)
if (
input_key in ("pixel_values_videos", "video_embeds")
and "video" not in mm_input_by_modality
):
mm_input_by_modality["video"] = self._parse_and_validate_video_input(
**kwargs
)
return mm_input_by_modality
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
if not mm_input_by_modality:
return []
# The result multimodal_embeddings is tuple of tensors, with each
# tensor correspoending to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in mm_input_by_modality:
multimodal_input = mm_input_by_modality[modality]
if modality == "image":
image_embeddings = self._process_image_input(multimodal_input)
if self.is_multimodal_pruning_enabled:
image_embeddings = self._postprocess_image_embeds_evs(
image_embeddings, multimodal_input
)
multimodal_embeddings += tuple(image_embeddings)
if modality == "video":
video_embeddings = self._process_video_input(multimodal_input)
if self.is_multimodal_pruning_enabled:
video_embeddings = self._postprocess_video_embeds_evs(
video_embeddings, multimodal_input
)
multimodal_embeddings += tuple(video_embeddings)
return multimodal_embeddings
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> torch.Tensor | IntermediateTensors:
"""Run forward pass for Qwen2.5-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch. **NOTE**: If mrope is enabled (default setting for
Qwen2.5-VL opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
"""
if intermediate_tensors is not None:
inputs_embeds = None
hidden_states = self.language_model.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
skip_prefixes = []
if self.visual is None:
skip_prefixes.extend(["visual."])
loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="visual.merger.",
tower_model="visual.",
)