Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

759 lines
29 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen3MoE model compatible with HuggingFace weights."""
import typing
from collections.abc import Callable, Iterable
from itertools import islice
from typing import Any
import torch
from torch import nn
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config
from vllm.distributed import (
get_ep_group,
get_pp_group,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_gather,
)
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.utils import sequence_parallel_chunk
from vllm.sequence import IntermediateTensors
from .interfaces import MixtureOfExperts, SupportsEagle3, SupportsLoRA, SupportsPP
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
logger = init_logger(__name__)
class Qwen3MoeMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: QuantizationConfig | None = None,
reduce_results: bool = True,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class Qwen3MoeSparseMoeBlock(nn.Module):
def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
super().__init__()
config = vllm_config.model_config.hf_text_config
parallel_config = vllm_config.parallel_config
quant_config = vllm_config.quant_config
self.tp_size = get_tensor_model_parallel_world_size()
self.ep_group = get_ep_group().device_group
self.ep_rank = self.ep_group.rank()
self.ep_size = self.ep_group.size()
self.n_routed_experts = config.num_experts
self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe
if self.tp_size > config.num_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.num_experts}."
)
# Load balancing settings.
vllm_config = get_current_vllm_config()
eplb_config = vllm_config.parallel_config.eplb_config
self.enable_eplb = parallel_config.enable_eplb
self.n_logical_experts = self.n_routed_experts
self.n_redundant_experts = eplb_config.num_redundant_experts
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
self.physical_expert_end = (
self.physical_expert_start + self.n_local_physical_experts
)
self.experts = FusedMoE(
num_experts=self.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=True,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
prefix=f"{prefix}.experts",
enable_eplb=self.enable_eplb,
num_redundant_experts=self.n_redundant_experts,
is_sequence_parallel=self.is_sequence_parallel,
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.num_experts,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
assert hidden_states.dim() <= 2, (
"Qwen3MoeSparseMoeBlock only supports 1D or 2D inputs"
)
is_input_1d = hidden_states.dim() == 1
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
if self.is_sequence_parallel:
hidden_states = sequence_parallel_chunk(hidden_states)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
if self.is_sequence_parallel:
final_hidden_states = tensor_model_parallel_all_gather(
final_hidden_states, 0
)
final_hidden_states = final_hidden_states[:num_tokens]
# return to 1d if input is 1d
return final_hidden_states.squeeze(0) if is_input_1d else final_hidden_states
class Qwen3MoeAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: dict[str, Any] | None = None,
max_position_embeddings: int = 8192,
head_dim: int | None = None,
rms_norm_eps: float = 1e-06,
qkv_bias: bool = False,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
dual_chunk_attention_config: dict[str, Any] | None = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.dual_chunk_attention_config = dual_chunk_attention_config
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
dual_chunk_attention_config=dual_chunk_attention_config,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
**{
"layer_idx": extract_layer_index(prefix),
"dual_chunk_attention_config": dual_chunk_attention_config,
}
if dual_chunk_attention_config
else {},
)
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
# Add qk-norm
q_by_head = q.view(*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim)
q_by_head = self.q_norm(q_by_head)
q = q_by_head.view(q.shape)
k_by_head = k.view(*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim)
k_by_head = self.k_norm(k_by_head)
k = k_by_head.view(k.shape)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class Qwen3MoeDecoderLayer(nn.Module):
def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_text_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
dual_chunk_attention_config = getattr(
config, "dual_chunk_attention_config", None
)
self.self_attn = Qwen3MoeAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
rms_norm_eps=config.rms_norm_eps,
qkv_bias=getattr(config, "attention_bias", False),
head_dim=getattr(config, "head_dim", None),
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
dual_chunk_attention_config=dual_chunk_attention_config,
)
# `mlp_only_layers` in the config.
layer_idx = extract_layer_index(prefix)
mlp_only_layers = (
[] if not hasattr(config, "mlp_only_layers") else config.mlp_only_layers
)
if (layer_idx not in mlp_only_layers) and (
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
):
self.mlp = Qwen3MoeSparseMoeBlock(
vllm_config=vllm_config, prefix=f"{prefix}.mlp"
)
else:
self.mlp = Qwen3MoeMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class Qwen3MoeModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_text_config
quant_config = vllm_config.quant_config
parallel_config = vllm_config.parallel_config
eplb_config = parallel_config.eplb_config
self.num_redundant_experts = eplb_config.num_redundant_experts
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.config = config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens",
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Qwen3MoeDecoderLayer(vllm_config=vllm_config, prefix=prefix),
prefix=f"{prefix}.layers",
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
# Track layers for auxiliary hidden state outputs (EAGLE3)
self.aux_hidden_state_layers: tuple[int, ...] = ()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
aux_hidden_states = []
for layer_idx, layer in enumerate(
islice(self.layers, self.start_layer, self.end_layer),
start=self.start_layer,
):
# Collect auxiliary hidden states if specified
if layer_idx in self.aux_hidden_state_layers:
aux_hidden_state = (
hidden_states + residual if residual is not None else hidden_states
)
aux_hidden_states.append(aux_hidden_state)
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
# Return auxiliary hidden states if collected
if len(aux_hidden_states) > 0:
return hidden_states, aux_hidden_states
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
num_redundant_experts=self.num_redundant_experts,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Skip loading extra parameters for GPTQ/modelopt models.
ignore_suffixes = (
".bias",
"_bias",
".k_scale",
"_k_scale",
".v_scale",
"_v_scale",
".weight_scale",
"_weight_scale",
".input_scale",
"_input_scale",
)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra parameters for GPTQ/modelopt models.
if name.endswith(ignore_suffixes) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
if name.endswith("scale"):
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
if weight_loader == default_weight_loader:
weight_loader(param, loaded_weight)
else:
weight_loader(param, loaded_weight, shard_id)
break
else:
is_expert_weight = False
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
# Anyway, this is an expert weight and should not be
# attempted to load as other weights later
is_expert_weight = True
# Do not modify `name` since the loop may continue here
# Instead, create a new variable
name_mapped = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name_mapped, self):
continue
# Skip loading extra parameters for GPTQ/modelopt models.
if (
name_mapped.endswith(ignore_suffixes)
and name_mapped not in params_dict
):
continue
param = params_dict[name_mapped]
# We should ask the weight loader to return success or not
# here since otherwise we may skip experts with other
# available replicas.
weight_loader = typing.cast(
Callable[..., bool], param.weight_loader
)
success = weight_loader(
param,
loaded_weight,
name_mapped,
shard_id=shard_id,
expert_id=expert_id,
return_success=True,
)
if success:
name = name_mapped
break
else:
if is_expert_weight:
# We've checked that this is an expert weight
# However it's not mapped locally to this rank
# So we simply skip it
continue
# Skip loading extra parameters for GPTQ/modelopt models.
if name.endswith(ignore_suffixes) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Remapping the name of FP8 kv-scale.
if name.endswith("kv_scale"):
remapped_kv_scale_name = name.replace(
".kv_scale", ".attn.kv_scale"
)
if remapped_kv_scale_name not in params_dict:
logger.warning_once(
"Found kv scale in the checkpoint (e.g. %s), but not found the expected name in the model (e.g. %s). kv-scale is not loaded.", # noqa: E501
name,
remapped_kv_scale_name,
)
continue
else:
name = remapped_kv_scale_name
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Qwen3MoeForCausalLM(
nn.Module, SupportsPP, SupportsLoRA, SupportsEagle3, MixtureOfExperts
):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
]
}
fall_back_to_pt_during_load = False
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_text_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
# Only perform the following mapping when Qwen3MoeMLP exists
if getattr(config, "mlp_only_layers", []):
self.packed_modules_mapping["gate_up_proj"] = ["gate_proj", "up_proj"]
self.model = Qwen3MoeModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
# Set MoE hyperparameters
self.expert_weights = []
self.moe_layers: list[FusedMoE] = []
example_layer = None
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
assert isinstance(layer, Qwen3MoeDecoderLayer)
if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
example_layer = layer.mlp
self.moe_layers.append(layer.mlp.experts)
if example_layer is None:
raise RuntimeError("No Qwen3MoE layer found in the model.layers.")
self.num_moe_layers = len(self.moe_layers)
self.num_expert_groups = 1
self.num_shared_experts = 0
self.num_logical_experts = example_layer.n_logical_experts
self.num_physical_experts = example_layer.n_physical_experts
self.num_local_physical_experts = example_layer.n_local_physical_experts
self.num_routed_experts = example_layer.n_routed_experts
self.num_redundant_experts = example_layer.n_redundant_experts
def set_eplb_state(
self,
expert_load_view: torch.Tensor,
logical_to_physical_map: torch.Tensor,
logical_replica_count: torch.Tensor,
) -> None:
for layer_idx, layer in enumerate(self.moe_layers):
# Register the expert weights.
self.expert_weights.append(layer.get_expert_weights())
layer.set_eplb_state(
moe_layer_idx=layer_idx,
expert_load_view=expert_load_view,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count,
)
def update_physical_experts_metadata(
self,
num_physical_experts: int,
num_local_physical_experts: int,
) -> None:
assert self.num_local_physical_experts == num_local_physical_experts
self.num_physical_experts = num_physical_experts
self.num_local_physical_experts = num_local_physical_experts
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
for layer in self.model.layers:
if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
moe = layer.mlp
moe.n_local_physical_experts = num_local_physical_experts
moe.n_physical_experts = num_physical_experts
moe.n_redundant_experts = self.num_redundant_experts
moe.experts.update_expert_map()
def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
self.model.aux_hidden_state_layers = layers
def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
num_layers = len(self.model.layers)
return (2, num_layers // 2, num_layers - 3)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()